Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 495 - 503
1 Apr 2022
Wong LPK Cheung PWH Cheung JPY

Aims. The aim of this study was to assess the ability of morphological spinal parameters to predict the outcome of bracing in patients with adolescent idiopathic scoliosis (AIS) and to establish a novel supine correction index (SCI) for guiding bracing treatment. Methods. Patients with AIS to be treated by bracing were prospectively recruited between December 2016 and 2018, and were followed until brace removal. In all, 207 patients with a mean age at recruitment of 12.8 years (SD 1.2) were enrolled. Cobb angles, supine flexibility, and the rate of in-brace correction were measured and used to predict curve progression at the end of follow-up. The SCI was defined as the ratio between correction rate and flexibility. Receiver operating characteristic (ROC) curve analysis was carried out to assess the optimal thresholds for flexibility, correction rate, and SCI in predicting a higher risk of progression, defined by a change in Cobb angle of ≥ 5° or the need for surgery. Results. The baseline Cobb angles were similar (p = 0.374) in patients whose curves progressed (32.7° (SD 10.7)) and in those whose curves remained stable (31.4° (SD 6.1)). High supine flexibility (odds ratio (OR) 0.947 (95% CI 0.910 to 0.984); p = 0.006) and correction rate (OR 0.926 (95% CI 0.890 to 0.964); p < 0.001) predicted a lower incidence of progression after adjusting for Cobb angle, Risser sign, curve type, menarche status, distal radius and ulna grading, and brace compliance. ROC curve analysis identified a cut-off of 18.1% for flexibility (sensitivity 0.682, specificity 0.704) and a cut-off of 28.8% for correction rate (sensitivity 0.773, specificity 0.691) in predicting a lower risk of curve progression. A SCI of greater than 1.21 predicted a lower risk of progression (OR 0.4 (95% CI 0.251 to 0.955); sensitivity 0.583, specificity 0.591; p = 0.036). Conclusion. A higher supine flexibility (18.1%) and correction rate (28.8%), and a SCI of greater than 1.21 predicted a lower risk of progression. These novel parameters can be used as a guide to optimize the outcome of bracing. Cite this article: Bone Joint J 2022;104-B(4):495–503


Bone & Joint Open
Vol. 4, Issue 11 | Pages 873 - 880
17 Nov 2023
Swaby L Perry DC Walker K Hind D Mills A Jayasuriya R Totton N Desoysa L Chatters R Young B Sherratt F Latimer N Keetharuth A Kenison L Walters S Gardner A Ahuja S Campbell L Greenwood S Cole A

Aims. Scoliosis is a lateral curvature of the spine with associated rotation, often causing distress due to appearance. For some curves, there is good evidence to support the use of a spinal brace, worn for 20 to 24 hours a day to minimize the curve, making it as straight as possible during growth, preventing progression. Compliance can be poor due to appearance and comfort. A night-time brace, worn for eight to 12 hours, can achieve higher levels of curve correction while patients are supine, and could be preferable for patients, but evidence of efficacy is limited. This is the protocol for a randomized controlled trial of ‘full-time bracing’ versus ‘night-time bracing’ in adolescent idiopathic scoliosis (AIS). Methods. UK paediatric spine clinics will recruit 780 participants aged ten to 15 years-old with AIS, Risser stage 0, 1, or 2, and curve size (Cobb angle) 20° to 40° with apex at or below T7. Patients are randomly allocated 1:1, to either full-time or night-time bracing. A qualitative sub-study will explore communication and experiences of families in terms of bracing and research. Patient and Public Involvement & Engagement informed study design and will assist with aspects of trial delivery and dissemination. Discussion. The primary outcome is ‘treatment failure’ (Cobb angle progression to 50° or more before skeletal maturity); skeletal maturity is at Risser stage 4 in females and 5 in males, or ‘treatment success’ (Cobb angle less than 50° at skeletal maturity). The comparison is on a non-inferiority basis (non-inferiority margin 11%). Participants are followed up every six months while in brace, and at one and two years after skeletal maturity. Secondary outcomes include the Scoliosis Research Society 22 questionnaire and measures of quality of life, psychological effects of bracing, adherence, anxiety and depression, sleep, satisfaction, and educational attainment. All data will be collected through the British Spine Registry. Cite this article: Bone Jt Open 2023;4(11):873–880


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 286 - 292
1 Mar 2024
Tang S Cheung JPY Cheung PWH

Aims. To systematically evaluate whether bracing can effectively achieve curve regression in patients with adolescent idiopathic scoliosis (AIS), and to identify any predictors of curve regression after bracing. Methods. Two independent reviewers performed a comprehensive literature search in PubMed, Ovid, Web of Science, Scopus, and Cochrane Library to obtain all published information about the effectiveness of bracing in achieving curve regression in AIS patients. Search terms included “brace treatment” or “bracing,” “idiopathic scoliosis,” and “curve regression” or “curve reduction.” Inclusion criteria were studies recruiting patients with AIS undergoing brace treatment and one of the study outcomes must be curve regression or reduction, defined as > 5° reduction in coronal Cobb angle of a major curve upon bracing completion. Exclusion criteria were studies including non-AIS patients, studies not reporting p-value or confidence interval, animal studies, case reports, case series, and systematic reviews. The GRADE approach to assessing quality of evidence was used to evaluate each publication. Results. After abstract and full-text screening, 205 out of 216 articles were excluded. The 11 included studies all reported occurrence of curve regression among AIS patients who were braced. Regression rate ranged from 16.7% to 100%. We found evidence that bracing is effective in achieving curve regression among compliant AIS patients eligible for bracing, i.e. curves of 25° to 40°. A similar effect was also found in patients with major curve sizes ranging from 40° to 60° when combined with scoliosis-specific exercises. There was also evidence showing that a low apical vertebral body height ratio, in-brace correction, smaller pre-brace Cobb angle, and daily pattern of brace-wear compliance predict curve regression after bracing. Conclusion. Bracing provides a corrective effect on scoliotic curves of AIS patients to achieve curve regression, given there is high compliance rate and the incorporation of exercises. Cite this article: Bone Joint J 2024;106-B(3):286–292


Bone & Joint Open
Vol. 5, Issue 3 | Pages 243 - 251
25 Mar 2024
Wan HS Wong DLL To CS Meng N Zhang T Cheung JPY

Aims

This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis.

Methods

A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included.


Abstract

MAGnetic Expansion Control (MAGEC) rods are used in the surgical treatment of children with early onset scoliosis. The magnetically controlled lengthening mechanism enables rod distractions without the need for repeated invasive surgery. The CE certification of these devices was suspended in March 2021 due, primarily, to performance evidence gaps in the documents provided by the manufacturer to regulators and notified bodies. MAGEC rods are therefore not permitted for use in countries requiring CE marking. This was a survey of 18 MAGEC rod surgeons in the UK about their perception of the impact of the CE suspension on the clinical management of their patients. Unsurprisingly, virtually all perceived a negative impact, reflecting the complexity of this patient group. Reassuringly, these surgeons are highly experienced in alternative treatment methods.

Cite this article: Bone Jt Open 2022;3(2):155–157.


Bone & Joint Open
Vol. 3, Issue 2 | Pages 123 - 129
1 Feb 2022
Bernard J Bishop T Herzog J Haleem S Lupu C Ajayi B Lui DF

Aims

Vertebral body tethering (VBT) is a non-fusion technique to correct scoliosis. It allows correction of scoliosis through growth modulation (GM) by tethering the convex side to allow concave unrestricted growth similar to the hemiepiphysiodesis concept. The other modality is anterior scoliosis correction (ASC) where the tether is able to perform most of the correction immediately where limited growth is expected.

Methods

We conducted a retrospective analysis of clinical and radiological data of 20 patients aged between 9 and 17 years old, (with a 19 female: 1 male ratio) between January 2014 to December 2016 with a mean five-year follow-up (4 to 7).


Aims

Psychoeducative prehabilitation to optimize surgical outcomes is relatively novel in spinal fusion surgery and, like most rehabilitation treatments, they are rarely well specified. Spinal fusion patients experience anxieties perioperatively about pain and immobility, which might prolong hospital length of stay (LOS). The aim of this prospective cohort study was to determine if a Preoperative Spinal Education (POSE) programme, specified using the Rehabilitation Treatment Specification System (RTSS) and designed to normalize expectations and reduce anxieties, was safe and reduced LOS.

Methods

POSE was offered to 150 prospective patients over ten months (December 2018 to November 2019) Some chose to attend (Attend-POSE) and some did not attend (DNA-POSE). A third independent retrospective group of 150 patients (mean age 57.9 years (SD 14.8), 50.6% female) received surgery prior to POSE (pre-POSE). POSE consisted of an in-person 60-minute education with accompanying literature, specified using the RTSS as psychoeducative treatment components designed to optimize cognitive/affective representations of thoughts/feelings, and normalize anxieties about surgery and its aftermath. Across-group age, sex, median LOS, perioperative complications, and readmission rates were assessed using appropriate statistical tests.


Bone & Joint Open
Vol. 2, Issue 3 | Pages 163 - 173
1 Mar 2021
Schlösser TPC Garrido E Tsirikos AI McMaster MJ

Aims

High-grade dysplastic spondylolisthesis is a disabling disorder for which many different operative techniques have been described. The aim of this study is to evaluate Scoliosis Research Society 22-item (SRS-22r) scores, global balance, and regional spino-pelvic alignment from two to 25 years after surgery for high-grade dysplastic spondylolisthesis using an all-posterior partial reduction, transfixation technique.

Methods

SRS-22r and full-spine lateral radiographs were collected for the 28 young patients (age 13.4 years (SD 2.6) who underwent surgery for high-grade dysplastic spondylolisthesis in our centre (Scottish National Spinal Deformity Service) between 1995 and 2018. The mean follow-up was nine years (2 to 25), and one patient was lost to follow-up. The standard surgical technique was an all-posterior, partial reduction, and S1 to L5 transfixation screw technique without direct decompression. Parameters for segmental (slip percentage, Dubousset’s lumbosacral angle) and regional alignment (pelvic tilt, sacral slope, L5 incidence, lumbar lordosis, and thoracic kyphosis) and global balance (T1 spino-pelvic inclination) were measured. SRS-22r scores were compared between patients with a balanced and unbalanced pelvis at final follow-up.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 544 - 551
1 Nov 2016
Kim Y Bok DH Chang H Kim SW Park MS Oh JK Kim J Kim T

Objectives

Although vertebroplasty is very effective for relieving acute pain from an osteoporotic vertebral compression fracture, not all patients who undergo vertebroplasty receive the same degree of benefit from the procedure. In order to identify the ideal candidate for vertebroplasty, pre-operative prognostic demographic or clinico-radiological factors need to be identified. The objective of this study was to identify the pre-operative prognostic factors related to the effect of vertebroplasty on acute pain control using a cohort of surgically and non-surgically managed patients.

Patients and Methods

Patients with single-level acute osteoporotic vertebral compression fracture at thoracolumbar junction (T10 to L2) were followed. If the patients were not satisfied with acute pain reduction after a three-week conservative treatment, vertebroplasty was recommended. Pain assessment was carried out at the time of diagnosis, as well as three, four, six, and 12 weeks after the diagnosis. The effect of vertebroplasty, compared with conservative treatment, on back pain (visual analogue score, VAS) was analysed with the use of analysis-of-covariance models that adjusted for pre-operative VAS scores.