The Exeter V40 cemented polished tapered stem system has demonstrated excellent long-term outcomes. This paper presents a systematic review of the existing literature and reports on a large case series comparing implant fractures between the Exeter V40 series; 125 mm and conventional length stem systems. A systematic literature search was performed adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. In parallel, we performed a retrospective single centre study of Exeter V40 femoral stem prosthetic fractures between April 2003 and June 2020.Aims
Methods
Cementless knee arthroplasty has seen a recent resurgence in popularity due to conceptual advantages, including improved osseointegration providing biological fixation, increased surgical efficiency, and reduced systemic complications associated with cement impaction and wear from cement debris. Increasingly younger and higher demand patients are requiring knee arthroplasty, and as such, there is optimism cementless fixation may improve implant survivorship and functional outcomes. Compared to cemented implants, the National Joint Registry (NJR) currently reports higher revision rates in cementless total knee arthroplasty (TKA), but lower in unicompartmental knee arthroplasty (UKA). However, recent studies are beginning to show excellent outcomes with cementless implants, particularly with UKA which has shown superior performance to cemented varieties. Cementless TKA has yet to show long-term benefit, and currently performs equivalently to cemented in short- to medium-term cohort studies. However, with novel concepts including 3D-printed coatings, robotic-assisted surgery, radiostereometric analysis, and kinematic or functional knee alignment principles, it is hoped they may help improve the outcomes of cementless TKA in the long-term. In addition, though cementless implant costs remain higher due to novel implant coatings, it is speculated cost-effectiveness can be achieved through greater surgical efficiency and potential reduction in revision costs. There is paucity of level one data on long-term outcomes between fixation methods and the cost-effectiveness of modern cementless knee arthroplasty. This review explores recent literature on cementless knee arthroplasty, with regards to clinical outcomes, implant survivorship, complications, and cost-effectiveness; providing a concise update to assist clinicians on implant choice. Cite this article:
There is a large amount of evidence available
about the relative merits of unicompartmental and total knee arthroplasty
(UKA and TKA). Based on the same evidence, different people draw
different conclusions and as a result, there is great variability
in the usage of UKA. The revision rate of UKA is much higher than TKA and so some
surgeons conclude that UKA should not be performed. Other surgeons
believe that the main reason for the high revision rate is that
UKA is easy to revise and, therefore, the threshold for revision
is low. They also believe that UKA has many advantages over TKA
such as a faster recovery, lower morbidity and mortality and better
function. They therefore conclude that UKA should be undertaken
whenever appropriate. The solution to this argument is to minimise the revision rate
of UKA, thereby addressing the main disadvantage of UKA. The evidence
suggests that this will be achieved if surgeons use UKA for at least
20% of their knee arthroplasties and use implants that are appropriate
for these broad indications. Cite this article:
Objectives. Wear debris released from bearing surfaces has been shown to
provoke negative immune responses in the recipient. Excessive wear
has been linked to early failure of prostheses. Analysis using coordinate
measuring machines (CMMs) can provide estimates of total volumetric
material loss of explanted prostheses and can help to understand
device failure. The accuracy of volumetric testing has been debated,
with some investigators stating that only protocols involving hundreds
of thousands of measurement points are sufficient. We looked to
examine this assumption and to apply the findings to the clinical
arena. . Methods. We examined the effects on the calculated material loss from
a ceramic femoral head when different CMM scanning parameters were
used. Calculated wear volumes were compared with gold standard gravimetric
tests in a blinded study. . Results. Various scanning parameters including point pitch, maximum point
to point distance, the number of scanning contours or the total
number of points had no clinically relevant effect on volumetric
wear calculations. Gravimetric testing showed that material loss
can be calculated to provide clinically relevant degrees of accuracy. . Conclusions. Prosthetic surfaces can be analysed accurately and rapidly with
currently available technologies. Given these results, we believe
that routine analysis of explanted hip components would be a feasible
and logical extension to