Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

CURRENT TOTAL KNEE DESIGNS: EFFECT OF BASEPLATE ROUGHNESS AND LOCKING MECHANISM ON POLYETHYLENE BACKSIDE WEAR

The International Society for Technology in Arthroplasty (ISTA), 29th Annual Congress, October 2016. PART 4.



Abstract

Purpose

Previous retrieval studies demonstrate increased tibial baseplate roughness leads to higher polyethylene backside wear in total knee arthroplasty (TKA). Micromotion between the polyethylene backside and baseplate is affected by the locking mechanism design and can further increase backside wear. This study's purpose was to examine modern locking mechanisms influence, in the setting of both polished and non-polished tibial baseplates, on backside tibial polyethylene damage and wear.

Methods

Five TKA models were selected with different tibial baseplate and/or locking mechanism designs. Six retrieval tibial polyethylenes from each TKA model were matched based on time in vivo (TIV), age at TKA revision, BMI, gender, number of times revised, and revision reason. Two observers visually assessed each polyethylene. Primary outcomes were visual damage scores, individual visual damage modes, and linear wear rates determined on micro-computed tomography (micro-CT) scan in mm/year. Demographics were compared by one-way ANOVA. Damage scores, damage modes, and linear wear were analyzed by the Kruskal-Wallis test and Dunn's multiple comparisons test.

Results

There were no differences among the groups based on TIV (p=0.962), age (p=0.609), BMI (p=0.951), gender, revision number, or reason for revision. There was a significant difference across groups for visual total damage score (p=0.031). The polished tibial design with a partial peripheral capture locking mechanism and anterior constraint demonstrated a significantly lower score compared to one of the non-polished tibial designs with a complete peripheral-rim locking mechanism (13.0 vs. 22.0, p=0.019). Otherwise, mean total damage scores were not significant between groups. There were identifiable differences among the groups based on abrasions (p=0.006). The polished design with a tongue-in-groove locking mechanism demonstrated a significantly higher score compared to one of the designs with a non-polished baseplate (5.83 vs. 0.83, p=0.016). Only the two designs with non-polished baseplates demonstrated dimpling (5.67 and 8.67), which was significant when compared against all other groups (p<0.0001), but not against each other (p>0.99). No other significant differences were identified when examining burnishing, cold flow, scratching, or pitting. No polyethylene components exhibited embedded debris or delamination. There was a significant difference among groups for linear wear on micro-CT scanning (p=0.003). Two of the polished baseplate designs, one with the partial peripheral rim capture and one with the tongue-in-groove locking mechanism, demonstrated significantly lower wear rates than the non-polished design with a complete peripheral-rim locking mechanism (p=0.008 and p=0.032, respectively). There were no other differences in wear rates between groups.

Conclusions

Total damage scores and wear rates were similar between all groups except when comparing two of the polished TKA designs to one of the non-polished baseplate designs. The other TKA model with a non-polished tibial baseplate had similar damage scores and wear rates to the polished designs, likely due to its updated locking mechanism. Dimpling was specific for non-polished tibial baseplates while abrasions were identified in the design with a tongue-in-groove locking mechanism. Our study showed even in the setting of a non-polished tibial baseplate, modern locking mechanisms can decrease backside damage and wear similar to that of other current generation TKA designs.

For any figures or tables, please contact authors directly (see Info & Metrics tab above).


*Email: