header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

INFLUENCE OF TAPER ANGLE CLEARANCE ON THE TAPER CONNECTION STRENGTH

The International Society for Technology in Arthroplasty (ISTA), 29th Annual Congress, October 2016. PART 3.



Abstract

Introduction

Taper corrosion and fretting has been identified to be a major problem in total hip replacement during the past years. Taper design and manufacturing are not been standardised, and therefore it can be assumed that the tapers vary among different implant manufacturers. This can lead to variable contact situations and stresses in the taper junction depending on the combination. It can be assumed that the taper strength will influence the occurrence and magnitude of micromotions which are known to influence corrosion. Therefore, the aim of this study was to assess the influence of the taper angle clearance on the taper connection strength.

Material & Methods

For the investigation stem dummys with different taper angles were used that were manufactured from titanium alloy. The stem dummys were combined with ceramic heads with identically taper angles. Out of this, there were seven groups ranging from distal contact through full contact up to proximal contact. Three samples were used in each group and five repetitive measurements per samples were performed.

All taper connections were impacted with different forces (1 kN, 3 kN, 6 kN and 10 kN) and afterwards an increasing torque was applied until the head disconnected. The maximal torque off value was used as a measure for the taper strength.

Results

A greater taper clearance leads to a higher taper strength (Fig. 1). However, this effect is also influenced by the assembly force and becomes even stronger with higher assembly forces. When comparing a distal, full and proximal contact situation the full contact shows the lowest taper strength, whereas the distal contact situation leads to the highest taper strength.

Discussion and conclusion

The design variability in taper connections influences its strength. A smaller contact area leads to higher local contact pressure. It is assumed that this increases local plastic deformations of the surface structure which is beneficial for this self-locking mechanism of the junction. However, the effect of the assembly force seems to overcome the effect of the taper clearance. Therefore taper junctions should be firmly connected in total hip replacements.

Furthermore, surgeons should be aware that in a clinical case of a Mix & Match the taper strength may be reduced depending on the combined components.

For figures/tables, please contact authors directly.


*Email: