Abstract
Introduction
Highly cross-linked (HXL) polyethylene has demonstrated clinical advantages as a wear resistant acetabular bearing material in total hip arthroplasty (THA) [1]. In vitro wear testing has predicted a tenfold reduction in the wear rate of HXL polyethylene, as compared to its conventional, non-HXL counterpart [2]. To date, radiographic studies of head penetration represent the state-of-the-art in determining clinical wear of polyethylene hip liners [3]. However, as the amount of wear drops to very low levels, it becomes important to develop a precise and reliable method for measuring wear, facilitating a comparison of clinical results to expectations.
This study focuses on locating and quantifying the maximum linear wear of retrieved acetabular poly liners using a coordinate measuring machine (CMM). Specifically, HXL liners are compared to a baseline of conventional, non-HXL bearings.
Methods
An IRB-approved retrieval laboratory received 63 HXL acetabular bearing retrievals from 5 manufacturers with in vivo durations of 1.01–14.85 years. These were compared with 32 conventional, non-HXL controls (including gas plasma, gamma-barrier and EtO) from 3 manufacturers with in vivo durations of 1.03–20.89 years.
Liners were mounted in a tripod of axial contacts with the liner face positioned in a vertical plane. Each bearing was scanned with a CMM dual-probe head, with one horizontal probe scanning the articular surface and the other scanning the non-articular, sequentially. Surface-normal wall thickness values along each latitude were calculated using a custom developed algorithm (Figure 1). Because the liners are axially symmetric as manufactured, deviation in wall thickness at a given latitude represents linear wear [4].
Results
Total wear penetration for the HXL liners ranged from 0.02 to 1.03 mm, and for the conventional, non-HXL controls ranged from 0.07 to 6.85 mm. The HXL liners had an average linear wear rate of 0.02 mm/year, compared to 0.20 mm/year for the conventional, non-HXL controls (Figure 2). The direction of maximum wear, as measured in degrees from the cup pole, ranged from 8.32 to 73.86 degrees. Differences in wear rates as a function of crosslinking dose, as well as presence/absence of a lip can be identified.
Discussion
This wear measurement study of retrievals is the first application of a novel CMM technique to locate and quantify wear in HXL liners compared to conventional polyethylene controls. The study confirms the expectations of a tenfold reduction in wear rates that were based on in vitro testing [2]. The results are consistent with those of radiographic studies that have documented lower wear of HXL polyethylene in the hip compared to conventional polyethylene [3]. However, the current technique offers higher precision and reliability, and eliminates the large proportion of negative wear measurements common amongst radiographic methods. A sufficient number of liners have been measured to begin to differentiate wear between different radiation doses.