Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

DRIVING RESISTANCE DUE TO DIFFERENT CUTTING RAKE ANGLE FOR SELF TAPPING BONE SCREW

The International Society for Technology in Arthroplasty (ISTA), 29th Annual Congress, October 2016. PART 1.



Abstract

Introduction

Self tapping bone screw has been widely used in the fixation of Arthroplasty implants and bone graft. But the unwanted screw or driver breakage can be a direct result of excessive driving torque due to the thread cutting resistance. Previous studies showed that bone drill bit cutting rake angle was a critical factor and was inversely related to the bone cutting efficiency.1, 2, 3, 4 (Figure 1) However to date there was no data for how the rake angle could influence the performance of self tapping bone screw. The purpose of this study was to investigate the torque generated by the self tapping cortical screw in simulated bone insertion as a function of the screw tip cutting flute rake angle.

Methods

Two 5 mm thick BM5166 polyurethane block were stacked together and drilled through with 2.5mm diameter holes. Five 30mm long 3.5 mm diameter Ti6AL4V alloy self tapping cortical screws with 0°rake angle cutting flutes (Figure 2) were inserted in the holes and driven by the spanner attached to the test machine (Z5.0TN/TC-A-10) with a displacement control of 3 revolutions/min and 30N constant axial loading. The screws were driven into the stacked polyurethane block for 8mm depth. The maximum driving torque was recorded. Procedure was repeated for five same screws but with 7° rake angle cutting flutes. (Figure 2) The driving torqueses were compared. Student t test was performed with confidence level of 95% was assumed.

Results

The average insertion driving torque for the screw with 7° rake angle was 30% less torque required than that of the screw with 0° rake angle. (P=5.3E–06<0.05) (Table 1)

Conclusion and discussion

Screw failure during the insertion would be a nightmare. A slight positive rake angle significantly decreases the torque resistance. This design feature can significantly increase the safety margin of the self tapping screw implants and screw driving instruments. The likely mechanism would be the positive rake angle generated a more efficient bone cutting instead of pushing. More study on driving torque as a function of wider rake angle change is warranted.

For figures and tables, please contact authors directly


*Email: