header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

A COMPARISON OF IN-VIVO WEAR: 0 MM AND 4 MM OFFSET TOTAL HIP ARTHROPLASTY (THA) ACETABULAR LINERS

The International Society for Technology in Arthroplasty (ISTA), 29th Annual Congress, October 2016. PART 1.



Abstract

Introduction

Subluxation and dislocation are frequently cited reasons for THA revision. For patients who cannot accommodate a larger femoral head, an offset liner may enhance stability. However, this change in biomechanics may impact the mechanical performance of the bearing surface. To our knowledge, no studies have compared wear rates of offset and neutral liners. Herein we radiographically compare the in-vivo wear performance of 0mm and 4mm offset acetabular liners.

Methods

Two cohorts of 40 individuals (0mm, 4mm offset highly crosslinked acetabular liners, respectively) were selected from a single surgeon's consecutive caseload. All patients received the same THA system via the posterior approach. AP radiographs were taken at 6-week (‘pre’) and 5-year (‘post’) postoperative appointments. Patients with poor radiograph quality were excluded (n0mm=5, n4mm=4). Linear and volumetric wear were quantified according to Patent US5610966A. Briefly, images were processed in computer aided design (CAD) software. Differences in vector length between the center of the femoral head and the acetabular cup (pre- and post-vector, Figure 1) allow for calculation of linear wear and wear rate. The angle (β) between the linear wear vector and the cup inclination line was quantified (Figure 1). Patients with negative β were excluded from volumetric analyses (n0mm=11, n4mm=7). Volumetric wear was accordingly calculated accounting for wear vector direction. The results from three randomly selected patients were compared to results achieved using the “Hip Analysis Suite” software package (UChicagoTech).

Results

Linear wear rate (Figure 2A) for 0mm offsets was significantly lower than the 4mm offsets (0.011±0.091 vs. 0.080±0.122mm/yr, p=0.008). Volumetric wear rate (Figure 2B) for 0mm offsets was significantly lower than the 4mm offsets (30.37±20.45 versus 61.58±42.14mm3/year, p=0.001). Demographic differences existed between the two cohorts (age, gender, femoral head size, and acetabular cup size). However, there were no significant correlations found between linear/volumetric wear rate and any demographic including age, gender, BMI, femoral head size, or acetabular cup size. Validation showed no significant differences between the CAD method used herein and the gold standard method (0.083±0.014 versus 0.093±0.041mm/year, p=0.71).

Discussion

This study is the first to show that 0mm offset liners have significantly lower linear and volumetric wear rates than do 4mm offset liners. Despite this difference, no revisions have been required in either cohort. The linear wear rates computed in this study are below literature-reported clinically relevant values for wear-induced-osteolysis (∼0.10mm/year). As such, the clinical impact of this wear rate difference is unknown. The higher wear rate in the offset group may owe to the altered biomechanics of the construct. By lateralizing the femoral head through an offset liner, the femur is lateralized with respect to the patient's center of mass (COM) (Figure 3). To maintain stability, the patient must pull the COM over the femoral head by increasing force from the hip abductors. This increased force is transmitted through the polyethylene acetabular liner. Thus, increased wear may result from the forces required to maintain balance in gait. Further work is needed to determine whether these higher wear rates will have clinical sequelae.


*Email: