Abstract
Over the past several decades, cementless femoral fixation for primary total hip arthroplasties (THAs) has become more common in North America. It is estimated that nearly 90% of all primary THAs completed in the United States are cementless. In the Australian National Joint Replacement Registry, the use of cementless fixation has increased from 51.3% in 2003 to 63.3% in 2015. During the same time period, cemented fixation declined from 13.9% to 3.7%, but hybrid fixation was relatively stable at about 33%. This is likely related to the fact that multiple institutional and national registries have shown a higher rate of intra-operative periprosthetic femoral fractures with the use of cementless femoral components in certain patient populations. Those risk factors include patients greater than 65 years of age, female patients, and those with significant osteoporosis and Dorr C canals.
However, it is important to note that not all cementless femoral components are similar. In fact, there is great variation in not only the geometry of cementless femoral components, but also in the type and extent of the biologic ingrowth surfaces. Each design has unique advantages and disadvantages. While some cementless femoral components are indicated for the general population, some are more specific and tailored to complex primary THAs (such as developmental dysplasia of the hip or post-traumatic arthritis with intra-operative concern for femoral version and thus hip stability) or revision procedures where distal fixation is needed (such as those with periprosthetic fractures or lack of proximal metaphyseal bony support).
In 2000, Berry first described the evolution of cementless femoral components based upon distinct geometries that govern where fixation is obtained. This was modified in 2011 by Khanuja et al. to include six general types of cementless femoral components based upon shape. These include the following: Type 1: Single wedge; Type 2: Double edge with metaphyseal filling; Type 3: Tapered - A: Tapered round, B: Tapered spline/cone, C: Tapered rectangle; Type 4: Cylindrical fully coated; Type 5: Modular; Type 6: Anatomic.
Type 1, 2, and 6 cementless femoral components obtain fixation in the metaphysis, whereas Type 3 stems obtain fixation in the metaphyseal-diaphyseal junction. Type 4 stems obtain fixation in the diaphysis. Type 5 stems can obtain fixation in either the metaphysis or the diaphysis.
Within each type of stem, specific implant designs have had excellent long-term survivorship, while other specific implant designs have had higher than expected failure rates. Type 1 stems have the most published reports, and most contemporary reports indicate a stem survivorship greater than 95% at 15–20 years. Similar findings have been documented with specific implants from other types of stems when appropriate indications and surgical technique are utilised. Of note, one class of stems that has shown early failures due to adverse local tissue reactions (ALTR) is that of dual-modular necks. On the other hand, modular fluted tapered stems continue to produce excellent long-term data in complex primary THAs, as well as difficult revision THAs.