header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

DETERMINATION OF THE MECHANICAL AXIS OF THE FEMUR USING 3D-2D MODEL TO X-RAY REGISTRATION

International Society for Computer Assisted Orthopaedic Surgery (CAOS) - 15th Annual Meeting



Abstract

For a successful total knee arthroplasty (TKA) and long prosthesis lifespan, correct alignment of the implant components as well as proper soft tissue balancing are of major importance. In order to overcome weaknesses of existing imaging modalities for TKA planning such as radiation exposure and lack of soft tissue visualisation (X-ray and CT) and high cost, long acquisition times and geometric distortion (MRI), it is investigated if ultrasound (US) imaging is a suitable alternative.

Currently, a reconstruction method of the bony knee morphology based on US imaging is developed at our research institute. For capturing the mechanical axis, being crucial for TKA planning, different approaches could be implemented. This work investigates whether a weight-bearing full leg X-ray registered with the local 3D-US knee dataset can be used for this purpose. Also, the impact of incorrect calibration data (i.e. uncalibrated X-rays) on the accuracy of the estimated mechanical axis is investigated.

A 3D-2D projective, feature-based registration algorithm was used to spatially align the 3D US-based model to the 2D X-ray image before transferring the mechanical axis from the X-ray to the model. For validation, a CT-based local model and its projection were used and an initial error in translation and rotation was added. Also, calibration parameters such as the centre ray position and the source-to-image-detector distance were altered. The estimation error of the mechanical axis was less than 1°, the median error lower than 0.1° in the frontal plane. Even if the calibration data is not available, the accuracy remains sufficient for TKA planning. In this study, idealised 2D and 3D image information was used. In the future, this method should be tested using clinical X-ray images and 3D-US data.