Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

ANALYSIS OF WEAR PARTICLE OF PVA HYDROGEL AND EFFECT OF THE PARTICLE ON IMMUNE RESPONSE OF MACROPHAGE

The International Society for Technology in Arthroplasty (ISTA), 27th Annual Congress. PART 3.



Abstract

It is reported that more than 10 million Japanese suffer from arthrosis. To cure these cartilage defects, total joint replacements, which are the most popular treatment methods for severe disease situation, have been operated as about two hundred thousand cases a year in Japan. Although the implants made of either ceramics, metals or plastics have high wear resistance quality, it becomes apparent that the endurance life of the artificial joints in considerable cases is limited by aseptic loosening to between 10–15 years. Here we focused on a poly(vinyl alcohol) (PVA) hydrogel as an artificial cartilage tissue to make an improvement of friction surface of the artificial joints. In this paper, we observed morphology of wear particles and assessed immune responses of wear particles from the hydrogel for confirming the validity of the gel as a biotribological material.

We prepared 20 w/w% of PVA hydrogel by repeated freezing-thawing method. The number of the freezing-thawing cycles was five times. Polymerization degree and saponification degree of PVA (Kishida Chemical Co. Ltd., Japan) were 2000 and 98.4–99.8 mol%, respectively. To collect the wear particles of PVA hydrogel, we processed wear testing by using a purpose-build wear test machine of reciprocating pin-on-plate tribometer as shown in figure 1. We installed a Co-Cr-Mo ball of 26 mm in diameter as a stationary upper specimen and a PVA hydrogel plate of 2 mm in thickness as reciprocating lower specimen in a water bath. The lubricant was a distilled water containing eluted PVA which PVA-FT gel had been soaked in, filtered by 0.22 μm and autoclaved, subsequently. Siding speed was 50 mm/s and the total sliding distance was 3 km. We observed the wear particles which had been dried in a desiccator, by scanning electron microscope (SEM; SU8000, Hitachi High-Technologies). Additionally, to investigate the effect of the wear particles on response of phagocytosis of macrophages, here we used THP-1 cell line from Human acute monocytic leukemia as a macrophage, which was purchased from JCRB Cell Bank, and attached the macrophages on a dish after stimulating THP-1 by phorbol 12-myristate 13-acetate (PMA; Wako). After the wear test, we harvested the lubricant in aseptic clean hood and applied the particles to the macrophages to clarify the effect of wear particles of PVA hydrogel on immune response of the cell. To assess cytokine biosynthesis as immune responses, we assayed IL-1β and TNF-α biosynthesis in culture medium by ELISA (Thermo scientific), respectively.

Figure 2 shows an SEM image of PVA hydrogel after wear test under 4.9 N loading. We observed the wear particles of varied sizes. When applying the wear particles to the macrophages in RPMI-1640 supplement with 10 v/v% fetal bovine serum, it seemed that there were not enough change on cytokine synthesis in culture medium between with/without the particles.


Email: