Abstract
The number one reason to consider large heads in total hip arthroplasty (THA) is for increased stability. Large diameter femoral heads substantially increase stability by virtue of increased range of motion and increased jump distance, which is the amount of displacement required to sublux the head out of the socket. Prevention is the best means for reducing dislocation, with requisites for stability being appropriate component position, restoration of leg length, and restoration of offset.
In a review from our center studying the frequency of dislocation with small diameter femoral heads (≤32 mm) in 1262 patients (1518 hips) who underwent primary THA performed via a direct lateral approach, we observed a dislocation rate of 0.8% (12 of 1518). In a subsequent study of 1748 patients (2020 hips) who underwent primary THA at our center with large diameter heads (mean 43 mm, range 36–60 mm), we observed a substantially lower 0.04% frequency of dislocation (one of 2010) at a mean followup of 2.6 years.
Our findings have been echoed in studies from several other centers. Howie et al. reported a prospective controlled trial of 644 low risk patients undergoing primary or revision THA randomised to receive either a 36 mm or 28 mm metal head articulated on highly crosslinked polyethylene. They observed significantly lower frequency of frequency of dislocation with 36 mm heads both overall (1.3%, 4 of 299 versus 5.4%, 17 of 216 with 28 mm heads, p=0.012) and in primary use (0.8%, 2 of 258 versus 4.4%, 12 of 275 with 28 mm heads, p=0.024), and a similar trend in their smaller groups of revision patients (5%, 2 of 41 versus 12%, 5 of 41 with 28 mm heads, p=0.273).
Lachiewicz and Soileau reported on early and late dislocation with 36- and 40 mm heads in 112 patients (122 hips) at presumed high risk for dislocation who underwent primary THA. Risk factors were age >75 for 80 hips, proximal femur fracture for 18, history of contralateral dislocation for 2, history of alcohol abuse in 2, large acetabulum (>60 mm) in 6, and other reasons in 14. Early dislocation (<1 year) occurred in 4% (5 of 122), all with 36 mm heads. Late dislocation (>5 years) did not occur in any of the 74 patients with follow up beyond 5 years.
Stroh et al. compared 225 patients (248 hips) treated with THA using small diameter heads (<36 mm) to 501 patients (559 hips) treated with THA using large diameter heads (≥36 mm). There were no dislocations with large diameter heads compared with 1.8% (10 of 559) with small diameter heads.
Allen et al. studied whether or not large femoral heads improve functional outcome after primary THA via the posterior approach in 726 patients. There were 399 done with small heads (<36 mm), 254 with medium heads (36 mm), and 73 with large heads (>36 mm), analyzed preoperatively, at 6 months, and at 12 months. The authors could not find a correlation between increasing head size and improved function at one year, but observed that dislocation was reduced with large diameter heads.
Optimization of hip biomechanics via proper surgical technique, component position, and restoration of leg length and offset are mandatory in total hip arthroplasty. Large heads enhance stability by increasing range of motion prior to impingement and enhancing jump stability.