header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

THE COL5A1 3′-UTR AND CHRONIC ACHILLES TENDINOPATHY: A FUNCTIONAL STUDY

British Society for Matrix Biology (BSMB) Satellite Meeting: ‘Advances in Tendon Research: From Bench to Bedside’



Abstract

Introduction

The COL5A1 gene encodes for the α1 chain of type V collagen, a minor fibrillar collagen that is an important regulator of collagen fibrillogenesis. Several polymorphisms, including rs12722 (C/T), within the 3′-UTR of COL5A1 are associated with chronic Achilles tendinopathy and other musculoskeletal soft tissue injuries as well as exercise-related phenotypes. It is hypothesised that polymorphisms within the 3′-UTR regulate the amount of the α1(V) chain synthesised and type V collagen production. This in turn influencing the mechanical properties of tendons and other musculoskeletal soft tissues. In our laboratories, two major functional forms, namely the T- and C-allelic forms of the COL5A1 3′-UTR, were identified and associated predominately with severe chronic Achilles tendinopathy and healthy asymptomatic control individuals, respectively.

Materials and Methods

To further investigate the functional differences between the two major 3′-UTR functional forms as well as to start mapping the regions which are responsible for the tendinopathic phenotype, skin biopsies from donors having a known genotype at rs12722 and primary fibroblast cell lines were established in order to quantify COL5A1 and COL1A1 expression levels in a pilot study. Lastly, in preliminary RNA EMSAs, biotinylated C- and T-allelic RNA probes for a specific 57bp functional region within the 3′-UTR were incubated with either fibroblast nuclear or cytoplasmic protein extracts to investigate putative distinguishing RNA:RBP complex formation.

Results

An overall higher relative mRNA expression of both COL5A1 (p<0.001) and COL1A1 (p=0.0015) were observed in primary skin fibroblasts from donors having a rs12722 TT genotype compared to donors with a CC genotype. A unique RNA:RBP complex was also identified with the C-allelic probe.

Discussion

These novel results have important implications for our understanding of the proposed role of type V collagen in the aetiology of tendon and other musculoskeletal soft tissue injuries, as well as, other exercise-related phenotypes.


Email: