Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

STATIC FATIGUE PROPERTIES OF TENDONS IN A RAT MODEL OF DIABETES

British Society for Matrix Biology (BSMB) Satellite Meeting: ‘Advances in Tendon Research: From Bench to Bedside’



Abstract

Introduction

Tendon disease and rupture are common in patients with diabetes and these are exacerbated by poor healing. although nanoscale changes in diabetic tendon are linked to increased strength and stiffness. The resistance to mechanical damage of a tissue may be measured using fatigue testing but this has not been carried out in diabetic tendon, although the toughness of diabetic bone is known to be reduced. The aim of this study was to measure the static fatigue behaviour of tendons from a streptozotocin (STZ)-induced rat model of diabetes, hypothesising that diabetes causes tendon to show lower resistance to mechanical damage than healthy tendon.

Materials and Methods

Diabetic (n=3, 12 weeks post-STZ) and age-matched control (n=3) adult male Sprague Dawley rats were culled, tails harvested and stored at −80ºC. Following defrosting, fascicles (5 per animal) were carefully dissected, mean diameter measured using an optical micrometer and mounted in a Bose Biodynamics test machine using custom grips in a PBS bath. Static fatigue testing at 30 MPa to failure enabled both elastic modulus (initial ramp) and steady state creep rate (gradient at creep curve inflexion) to be measured. Data are reported as median ± interquartile range and pw0.05 using a Mann-Whitney U test was taken as significant.

Results

Confirming previous reports, tendon from diabetic rats showed significantly higher elastic modulus (201 ± 68 MPa) than healthy (151 ± 62 MPa). Strain at failure showed no differences between groups. Tendon from diabetic rats showed significantly slower steady state creep (71 ± 44 μstrain s−1) than healthy (691 ± 1000 μstrain s−1).

Discussion

These preliminary data show an order of magnitude larger resistance to mechanical damage in diabetic tendons, possibly associated with the previously reported increased packing and decreased fibril diameters. Energy-storing flexor tendons, the most commonly affected in diabetics, and the positional tendons tested here show similar fatigue behaviour when tested at the same fraction of “stress-in-life”. Further investigation is required into the cell tissue repair response in diabetes in order to link reduced rates of mechanical damage with the clinically increased risk of disease and rupture in diabetic patients.


Email: