Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

FEMORAL NECK MODULARITY IN PRIMARY THA: NO ROLE AT ALL – OPPOSES

Current Concepts in Joint Replacement (CCJR) – Winter 2014



Abstract

The advantages of modularity in both primary and revision hip surgery are well documented, and have been at the heart of innovation in hip implant design over the last two decades. There have been significant developments in modularity proximally at the head-neck junction, more distally with modular necks and at mid-stem level, notable for complex revisions. Modularity allows us to address version, length and offset issues and to restore optimal hip biomechanics. There are, however, increasing clinical concerns associated with the failure of taper junctions. The use of large femoral heads and modular stems are now considered major risk factors for taper corrosion. Recent studies have shown an 8–9% early revision rate of one modular neck design due to pain and adverse local tissue reaction. I will summarise our laboratory and retrieval data on taper design and tribology in order to put in perspective the clinical use of modularity in hip arthroplasty.

Modular junctions rely on a frictional interlock. The engagement obtained and resulting micromotion is strongly influenced by taper size, taper length/engagement, material, surface finish, neck length and offset. In our quest for thinner femoral necks, greater offsets and bigger femoral heads, we have inadvertently created an environment that can generate fretting corrosion at modular junctions and leads to premature implant failure.

Our work demonstrates that increasing torque and bending moment leads to increased susceptibility to fretting corrosion at the modular taper interface of total hip replacements. This is particularly relevant with the increasing use of larger diameter femoral heads that produce higher torques. It also identifies surface area and surface finish as important factors in wear and corrosion at the modular interface of total hip replacements. Critically, the combination of these factors can lead to extensive corrosion at the interface.

Surgical technique is also important. Higher impaction loads on clean, dry surfaces result in greater contact length and extraction forces, which may influence micromotion.

It is critical in future that all innovation is introduced in a systematic gradual fashion so that we do not fall into similar traps again. The unintended consequences of minor changes in design may have a massive effect on outcomes. Our findings suggest that it may be possible to continue to employ the advantages of modularity in hip surgery whilst avoiding some of the pitfalls that have led to the failure of some modular systems.

Understanding the key design and surgical factors that drive the performance of taper junctions is vital for the surgical community. There is a body of knowledge that supports appropriate taper use / modularity to help surgeons deal with complex situations. We must be careful not throw the baby out with the bathwater.