Abstract
Total knee arthroplasty has been shown to provide relief of pain and improved function; however studies have shown that younger active patients still note limitations in performing higher level activities such as dancing, golfing, skiing and gardening. Journey II BCS is designed to have physiological matching which more accurately reproduces the normal knee anatomy and kinematics. By providing more anatomic restoration of the articular geometry and substituting for both cruciate ligaments, Physiological Matching TKA has been shown, with in-vivo kinematic studies, to better reproduce the normal bending, rollback and rotational motions of knees.
Patient matched instruments are patient specific custom designed cutting blocks. These instruments utilise pre-operative MRI and full leg x-rays to design guides that will position the knee in the desired mechanical alignment. The purpose of these instruments is to increase efficiency and accuracy, and possibly reduce cost.
Efficiency occurs through the elimination of multiple steps compared to the standard operative technique. A single patient matched femoral guide is easily placed and can align the valgus angle with the mechanical axis, and determine the level of resection, rotation, size, and AP position of the implant. A single tibial instrument can determine tibial alignment, depth of resection, slope and rotation. Efficiency also results by eliminating the need for many standard instruments and trays. Implant size is determination pre-operatively so fewer implant trials are necessary.
In summary, this Physiological Matching TKA surgery combines Journey II BCS with patient specific instruments to optimise kinematics, fit and efficiency in order to improve outcomes and patient satisfaction.