Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

COLLAGEN SCAFFOLDS MODIFIED WITH COLLAGEN-BINDING BFGF PROMOTES THE NEURAL REGENERATION IN THE RAT HEMISECTED SPINAL CORD INJURY MODEL

8th Combined Meeting Of Orthopaedic Research Societies (CORS)



Abstract

Summary Statement

Collagen scaffolds modified with collagen-binding bFGF promotes the neural regeneration in the rat hemisected spinal cord injury model.

Objective

To investigate the effects of the collagen scaffolds (CS) combined with collagen-binding basic fibroblast growth factor (CBD-bFGF) on the neural recovery after spinal cord injury (SCI).

Methods

The left lateral 3 mm hemisection SCI of rat model (at T9 level) was made. A bundle of 2mm×2mm×3mm CS fused with CBD-bFGF (2μg/10μl/bundle, CS/bFGF) was implanted into hemi-transected gap. There were four groups in this experiment, the sham group without SCI, the control group with SCI, the CS-treated group with SCI and implanted CS, the CS/bFGF-treated group with SCI and implanted CS/bFGF. The 21-point Basso-Beattie-Bresnahan (BBB) scale was performed before the operation and at 1 week intervals after SCI for 8 weeks to assess the hindlimb locomotor function. 4 and 8 weeks after operation, footprint analysis was applied to evaluate the body weight support and limb coordination, respectively. H&E staining and immunohistochemistry for neurofilament (NF) and glial fibrillary acidic protein (GFAP) was administrated for histological evaluation at 4 and 8 weeks post injury, respectively.

Results

1). The survival curve showed that CS/bFGF-treated group had a significantly higher survival rate than that of the control group and CS-treated group, while the control group had the lowest one. 2). BBB score showed all the animals with SCI showed a gradual recovery in hindlimb locomotor function during the 8 weeks period. Moreover, the left hindlimb function in CS/bFGF-treated recovered faster and better than that of the control group and CS-treated group. Footprint analysis showed a significant improvement in interlimb coordination in the CS/bFGF-treated group contrast to the CS-treated and control groups at 4 and 8 weeks, respectively. The base of support was obviously reduced in CS/bFGF group and 8 weeks after SCI, the base of support of the CS/bFGF-treated group could closely approximate that of sham-operated group. Compared to the control and CS-treated groups, the CS/bFGF-treated group showed smaller angle of rotation. In addition, toe dragging was more serious in the control and CS-treated group than that in the CS/bFGF group. 3). At 4 and 8 weeks, spinal cord sections stained with H&E showed a significant increase in the density of linear fibrous tissues and cell infiltration in and around the scaffold of CS/bFGF-treated group compared to the control and CS-treated groups. The CS/bFGF-treated group showed highest NF-positive neural fiber density. Besides, the NF-positive neural fibers could extend into the scaffold and grow along with the direction of CS. GFAP+ astrocytes were present around the hemi-transected site in all SCI rats. But the CS/bFGF-treated group showed lower number of GFAP+ cells than that of the control and CS treated group at 4 and 8 weeks after the surgery, respectively, while in the control group the number of GFAP+ cells was highest.

Conclusions

The data suggested that implantation of CS/bFGF into a semi-transected SCI rat model can guide axon growth at the injury site and promote obvious improvement in functional recovery. As a result, CS/bFGF combination could be a promising alternative system for the clinical application of SCI repair.