Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

THE USE OF DEMINERALISED CORTICAL BONE FOR TENDON AND LIGAMENT REPAIR

8th Combined Meeting Of Orthopaedic Research Societies (CORS)



Abstract

Summary

Our study shows that a tendon rupture can be successfully augmented with Demineralised Cortical Bone (DCB) giving initial appropriate mechanical strength suitable for in vivo use providing the biological reactions to the graft are favourable.

Introduction

Treatment of tendon and ligament injuries remains challenging; the aim is to find a biocompatible substance with mechanical and structural properties that replicate those of normal tendon and ligament. Because of its structural and mechanical properties, we proposed that DCB can be used in repair of tendon and ligament as well as regeneration of the enthesis. DCB is porous, biocompatible and has the potential to be remodelled by the host tissues. 2 studies were designed; in the first we examined the mechanical properties of DCB after gamma irradiation (GI) and freeze drying (FD). In the second we used different techniques for repairing bone-tendon-bone with DCB in order to measure the mechanical performance of the construct.

Methods

In the first study we allocated the DCB specimens into 4 groups; group-A non-freeze dried non-gamma irradiated, group-B freeze dried non-gamma irradiated, group-C non-freeze dried gamma irradiated and group-D freeze dried and gamma irradiated. The 4 groups were tested for maximum tensile strength. In the 2nd study, patella - patellar tendon - tibia construct of mature ewes were harvested and the distal 1cm of the patellar tendon was excised, 4 models of repair were tested;

• Model-1, DCB was used to bridge the gap between the tendon and the tibial tuberosity. The DCB strip was stitched to the tendon using one bone anchor.

• Model-2, similar to model-1 with the use of 2 bone anchors.

• Model-3, similar to model-2, construct was offloaded by Fiberwire continuous thread looped twice through bony tunnels sited in the patella and in the tibial tuberosity.

• Model-4, similar to model-3 with 3 hand braided fiberwire threads as offloading loop.

All 4 models were tested until failure and force displacement curves used to investigate the structural properties of the reconstruction.

Results

The Median of maximum tensile force for group-A was 218N [95%C.I.=147.9–284.7N], group-B was 306N [95%C.I.=154.1–488.6N], group-C was 263N [95%C.I.=227.8–315.6N], group-D was 676N [95%C.I.=127-1094.9N]. Group-D results were statistically higher (p=<0.05) compared to group-A and group-C, while there was no statistical significance compared to group-B. The median failure force for model-1 was 250N, (95%C.I.=235-287), model-2 was 290N (95%C.I.=197-396), model-3 was 767N (95%C.I.=730-812) and for model-4 was 934N (95%C.I.=867-975). There was no statistical significance between model-1 and model-2 (p=0.249), however statistical significance was found between other models (p=<0.006).

Discussion

Demineralised Bone is widely used as a bone graft substitute and may be used to augment bone formation in load bearing applications. In this study we focus on the potential use of demineralised bone in ligament and tendon repair. A previous animal study by our group found that the use of demineralised bone can enhance healing of the enthesis. Other published studies suggested the possibility of using DCB as ligament substitute. We examined the effect of gamma radiation as the most common sterilisation technique in medical field and the freeze drying as a possible technique for long term storage on the tensile strength of the DCB.