Abstract
Many orthopaedic procedures require implants to be trialled before definitive implantation. Where this is required, the trials are provided in a set with the instrumentation. The most common scenario this is seen in during elective joint replacements. In Scotland (2007) the Scottish Executive (http://www.sehd.scot.nhs.uk/cmo/CMO(2006)13.pdf) recommended and implemented individually packed orthopaedic implants for all orthopaedic sets. The premise for this was to reduce the risk of CJD contamination and fatigue of implants due to constant reprocessing from corrosion. During many trauma procedures determining the correct length of plate or size of implant can be challenging. Trials of trauma implants is no longer common place. Many implants are stored in closed and sealed boxes, preventing the surgeon looking at the implant prior to opening and contaminating the device. As a result many implants are incorrectly opened and either need reprocessed or destroyed due to infection control policy, thus implicating a cost to the NHS. With even the simplest implants costing several hundreds of pounds, this cost is a very significant waste in resources that could be deployed else where. My project was to develop a method to produce in department accurate, cheap and disposable trials for implants often used in trauma, where the original manufacturer do not offer the option of a trial off the shelf. The process had to not involve contaminating or destroying the original implant in the production of a trial.
Several implants which are commonly used within Glasgow Royal Infirmary and do not have trials were identified. These implants were then CT scanned within their sealed and sterile packaging without contamination. Digital 3D surface renders of the models were created using free open source software (OsiriX, MeshLab, NetFabb). These models were then processed in to a suitable format for 3D printing using laser sintering via a cloud 3D printing bureau (Shapeways.com). The implants were produced in polyamide PA220 material or in 316L stainless steel. These materials could be serialized using gamma irradiation or ethylene oxide gas. The steel models were suitable for autoclaving in the local CSSU.
The implants produced were accurate facsimiles of the original implant with dimensions within 0.7mm. The implants were cost effective, an example being a rim mesh was reproduced in polyamide PA220 plastic for £3.50 and in 316L stainless steel for £15. The models were produced within 10 days of scanning. The stainless steel trials were durable and suitable for reprocessing and resterilisation.
The production of durable, low cost and functional implant trials all completed in department was successful. The cost of production of each implant is so low that it would be offset if just one incorrect implant was opened during a single procedure. With some of the implants tested, the trials would have paid for themselves 100 times. This is a simple and cost saving technique that would help reduce department funding and aid patient care.