Abstract
Image-free navigation technology relies heavily on the surgeon carefully registering bony anatomical landmarks, a critical step in achieving accurate registration which affects the entire procedure. Currently this step may depend on placing a pointer superficially, with soft-tissue and skin obscuring these bony landmarks. We report initial results of using newly developed experimental software which automatically recognises the bone soft-tissue interface. This is the first critical step in development of automatic computer generation of the bone surface topography from ultrasound scanning.
Individual 2D ultrasound images (n=651) of the anterior femoral condyles and trochlear notch were used. Images were taken from 29 volunteers (20 male, 9 female). The software extracted bone-soft tissue interface by a two-step method based on a gradient evaluation and the elimination of false-positives with a graph closure. The trochlear notch was automatically defined by geometrical modelisation. Coordinates of both bone interface and trochlear notch position for each separate image were compared to a separate analysis performed manually by a single investigator. Error was calculated using root mean squared (RMS).
Median error (RMS) in locating bone soft-tissue interface was 0.67 mm, (mean 0.93 mm, SD 0.84 mm). Median error for trochlear notch topography was 1.01mm, (mean 1.41 mm, SD 1.37 mm).
Bone soft-tissue interface can be accurately defined and displayed by this software. Direct visualisation of critical bony landmarks could replace the current comparatively subjective placement of a pointer on superficial tissues. This has powerful application in both non-invasive and surgical computer-assisted acquisition of knee kinematics, and may have further applications in orthopaedic surgery.