Abstract
3D printing and rapid prototyping in surgery is an expanding technology. It is often used for preoperative planning, procedure rehearsal and patient education. There have been recent advances in orthopaedic surgery for the development of patient specific guides and jigs. The logical next step as the technology advances is the production of custom orthopaedic implants.
I aimed to use freely available open source software and online cloud 3D printing services to produce a patient specific orthopaedic implant without requiring the input of a university department, specialised equipment or implant companies.
Using standard CT scan DICOM data, a 3D surface reconstruction was made of a patient's uninjured radial head using open source DICOM viewer OsiriX. This was then manipulated in other open source software packages called Meshlabs and Netfabb to create a mirror image 3D model of the radial head with a stem to produce a prosthesis suitable to replace the contralateral fractured radial head. This was then uploaded and printed in stainless steel via cloud printing service Shapeways.com.
The model produced was an exact replication of the patient's original anatomy, except a mirror image suitable for replacement of the contralateral side. The process did not involve any specialist equipment or input from an academic department or implant company. It took a total of 10 days to produce and cost less than £40.
From this study I was able to show that production of patient specific orthopaedic implants is possible. It also highlights that the technology is accessible to all, and does not require any special equipment or large investment. It can be achieved quickly and for a very small financial outlay. As a proof of concept it has been very successful.