Abstract
Purpose
The purpose of this study was to assess the accuracy of three-dimensional camera technology when monitoring deformity correction by an Ilizarov frame and to compare it to manual measurements.
Methods and Results
A model consisting of an Ilizarov frame built around an artificial tibia and fibula was used with retro-reflective markers placed on the frame and bones to allow for the positions of each to be detected by the camera system. Measurements made by the camera system were compared to measurements taken manually. In the assessment of frame lengthening, the camera system average error was 2% (SD 2%) compared to 7% (SD 6%) for manual measurement. In the assessment of bone lengthening, the camera system average error was 4% (SD 4%) compared to 34% (SD 8%) for manual measurement. The technology also demonstrated good accuracy in the measurement of angular deformity changes.
Conclusion
The results of this study demonstrate that the measurement of deformity correction with three-dimensional infra-red camera technology is superior to manual measurements in a model of deformity correction. This method could replace or greatly reduce x-ray exposure in monitoring deformity correction post-operatively.