Abstract
Acetabular component positioning is highly correlated with total hip arthroplasty (THA) outcomes. Multiple reports however indicate that less than 50% of acetabular cups are placed within surgeon-desired ranges for abduction and anteversion angles when using conventional cup positioning techniques. Issues with improper placement include instability-dislocation, impingement and impact on range of motion, polyethylene wear, leg length discrepancy, and gait mechanics. Accuracy in placement of the acetabular component is complicated by the need to estimate cup impactor angles to create desired cup position. A low cost approach to THA using Image-based Ultrasonic Guidance (IUG) (Orthosensor, Sunrise, FL) coupled to existing surgical tools is presented. IUG utilises acoustic measurement techniques for achieving optimal component positioning and leg length. A precisely machined Hip Test Fixture (HTF) has been built to simulate the anatomical pelvis, acetabular cup, and femur to validate system accuracy.
The IUG was affixed to the HTF to demonstrate placement of the cup during THA. The HTF was loaded onto a 27-inch Graphic User Interface (GUI) providing three-dimensional CAD data of the HTF. Registration points included the Iliac Crest and 10 points around the acetabular cup. These points were mapped to the CAD data by the GUI. The HTF was set to 45° of abduction and 0° of version to begin testing. Abduction and version were measured over a +15° range in 1-degree increments while leg length and offset were measured over a +5mm range in 2mm increments. A high-resolution coordinate measurement machine (FaroArm EDGE) verified the accuracy and margin of error for inclination, version, leg length and offset at each increment.
The HTF provided a precise means for evaluating IUG system accuracy of simulated THA in a controlled environment. Acceptable margins of error were reported on the HTF: mean error for version was 0.36° (SD 0.02°; 0.25° to 0.38°); mean error for inclination was 1.04° (SD 0.52°; 0.48° to 1.66°); mean error for leg length and offset were respectively 0.36mm (SD 0.86mm; −0.65 to 1.55mm) and 0.41mm (SD 0.28; 0.05 to 0.80mm).
IUG provides a means for achieving acceptable precision and accuracy in component placement during THA as evaluated with the HTF. Further study is however necessary to correlate accuracy of IUG with clinical utility and short-term clinical outcomes.