Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

COMPUTER ASSISTED SURGERY APPLICATIONS IN ORTHOPAEDIC ONCOLOGY: INDICATIONS, TECHNIQUES AND RESULTS OF 130 CASES

Computer Assisted Orthopaedic Surgery (CAOS) 13th Annual Meeting of CAOS International



Abstract

Most types of bone tumor surgery require intra-operative imaging or measurement to control margins and prevent unnecessary bone loss. Computer Assisted Surgery (CAS) has been used as a replacement of fluoroscopy or direct measurement tools in four specific types of oncological orthopaedic surgical approaches. There are intralesional treatments, image-based resections, image-based resections with image-based reconstructions and image-based resections with imageless tumor prostheses reconstruction. Since 2006 we have performed 130 oncological surgeries with CAS.

Most cases were excochleations, 64, where CAS replaces fluoroscopy as an intra-operative imaging modality. Advantages over fluoroscopy are real time three dimensional feedback, high-res image and no use of ionizing radiation. It is especially useful in larger lesions or lesions located in the femoral head or pelvis. Currently a study is being performed on patient satisfaction, recurrence and complications.

Another application where CAS has often been used is in resections and segmental resections (together 45). These can be preplanned before surgery, incorporating the margin required, and checked intra-operatively. Coloration of the tumor, critical structures is useful to avoid these. Sometimes it's possible with careful planning to spare structures that otherwise probably would not confidently have spared.

With hemicortical resection (5) it's possible to use CAS to exactly copy the shape of the resected bone to an allograft. A Ct scan of one case shows an average gap between host and graft of 0.9 mm (range 0–5.4) along the 6 cm resection.

Finally in 16 cases of imageless use in placement of tumor prostheses it feels greatly helpful in reconstructing the joint line, length and correct rotation.

There were 8 failures in these 130 cases with the system or software. Setup time was measured in 47 cases and was on average 6:50 (range 2:26–14:27). Indication and performance of CAS in orthopedic oncology is an under researched aspect of CAS. In our opinion CAS shows great promise in the field of orthopedic oncology and is a valuable tool in the operating room.


Corresponding author: