Abstract
The Lubinus SP2 femoral stem has a 10 year survivorship of 96%. Curiosity lies in that force-closed stem designs such as the Exeter appear to be more superior to that of the composite-beam like the Lubinus which performs best compared with all other stem types. Biomechanical comparisons of the stress distributions between native and implanted human femora with a cemented Lubinus stem simulating an everyday clinical activity were made. Rosette strain gauges were placed onto fourth generation composite cortical sawbone femora and placed within a hemipelvis rig simulating the dynamic position of the femur during single-legged stance. The femora were then implanted with the Lubinus and principal strain measurements calculated for both intact and implanted femora. These values correlate directly with stress. Statistical calculations were carried out including a two-way ANOVA and Student's unpaired t-test so as to ascertain any relationship between the intact and implanted femora strain values.
There were significant decreases (p<0.05) in principal tensile and principal compressive strains upon implantation in the proximal and distal areas of the femur. However, there were insignificant changes (p>0.05) in principal tensile strains at the mid-stem and insignificant changes (p>0.05) in principal compressive strains at both the mid-stem and distal areas.
This is the largest biomechanical study to be carried out on this stem and the first in the English language. Changes in principal stresses were not significant in all aspects of the femur upon implantation which appears to give some biomechanical explanation to its clinical success.