Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

The Relationship of the Quadriceps Vector to the Femur

International Society for Technology in Arthroplasty (ISTA) 2012 Annual Congress



Abstract

To explain the knee kinematics, the vector of the quadriceps muscle, the primary extensor, is important and the relationship of the quadriceps vector (QV) to other kinematic and anatomic axes will help in understanding the knee.

Knee kinematics is important for understanding knee diseases and is critical for positioning total knee arthroplasty components. The relationship of the quadriceps to knee has not been fully elucidated. Three-dimensional imaging now makes it possible to construct a computer based solid model of the quadriceps and to calculate the vector of the muscle as individual parts and as a whole. Two studies are presented, one American and one Japanese subjects.

Using CT data from subjects who had CT for reasons other than lower extremity pathology (American) or specifically for the study (Japanese), 3-D models of each quadriceps component (vastus medialis, intermedius, lateralis and rectus femoris) were generated. Using principal component analysis for direction and volume for length, a vector for each muscle was constructed and addition of the vectors gave the QV. Three anatomic axes were defined: Anatomic Axis (AA) – long axis of the shaft of the femur; Mechanical Axis (MA) center of the femoral head to the center of the trochlear and the Spherical Axis (SA) – a line from the geometric center of the head of the femur to the geometric center of the medial condyle of the femur at the knee.

Fourteen American cases (mean age 39.1, 9 male 5 female) and 40 Japanese subjects (mean age 29.1, 21 male, 19 female) were evaluated. In all subjects the quadriceps vector at the level of the center of the femoral head was anterolateral to the center of the femoral head. The position of the QV was more lateral in Japanese compared to Americans; and, in Japanese, the vector was more lateral and posterior for women than for men. In both study populations, the QV was most closely aligned with the SA as compared to the AA or the MA.

The vector representing the quadriceps pull, originating at the top of the patella, progresses proximally toward the neck (not the head) of the femur. With the femur in anatomic position in the coronal plane, the vector crosses the femoral neck lateral to the femoral head approximately at the midpoint of the neck. While there were significant differences between the passing point of the vector based on sex and ethnicity, the QV vector most closely parallels the SA (< 1° different) for all subjects in this study. The relationship of the SA to the kinematic flexion axis (KFS) of the knee is being evaluated with the hypothesis that the relationship is 90°. If this is correct, the SA may prove a robust axis to which to align total knee arthroplasty.

We conclude that the QV as calculated progresses from the top of the patella to the mid-femoral neck and the SA is most closely parallel to this vector.