Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Non-Oxide Ceramics in Arthroplasty: The Case for Silicon Nitride as a Novel Biomaterial

International Society for Technology in Arthroplasty (ISTA) 2012 Annual Congress



Abstract

Oxide ceramics, such as alumina and zirconia have been used extensively in arthroplasty bearings to address bearing wear and mitigate its delayed, undesirable consequences. In contrast to oxide ceramics that are well-known to orthopaedic surgeons, silicon nitride (Si3N4) is a non-oxide ceramic that has been investigated extensively in very demanding industrial applications, such as precision bearings, cutting tools, turbo-machinery, and electronics. For the past four years, Si3N4 has also been used as a biomaterial in the human body; specifically in spinal fusion surgery. As a implantable biomaterial, Si3N4 has unique properties, such as high strength and fracture toughness, inherent chemical and phase stability, low wear, proven biocompatibility, excellent radiographic imaging, antibacterial advantages, and superior osteointegration. This property combination has proven beneficial and desirable in orthopaedic implants made for spinal fusion, spinal disc reconstruction, hip and knee arthroplasty, and other total joints (Fig. 1). The physical properties, shapes, sizes and surface features of Si3N4 can be engineered for each application – ranging from dense, finely polished articulation components, to highly porous scaffolds that promote osteointegration. Both porous and polished surfaces can be incorporated in the same implant, opening a number of opportunities for arthroplasty implant design. Crack propagation modes for in situ toughened Si3N4 differ favorably from those of conventional ceramics, rendering Si3N4 extremely resistant to catastrophic failure in vivo (Fig. 2). Most significantly, our recent work has shown that Si3N4 is resistant to bacterial biofilm formation, colonization and growth, when compared to medical-grade PEEK and titanium. These anti-infective characteristics are particularly valuable for in vivo implantation. We will present the unique properties and characteristics of Si3N4, and compare these to other ceramic and non-ceramic biomaterials. Si3N4 was once used only in industrial applications, but early data show that this novel biomaterial is positively impacting orthopaedic care and will continue to do so into the future.