header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

A NOVEL MULTI-PLANAR FLUOROSCOPY METHOD FOR ACCURATE 3D ASSESSMENT OF KNEE KINEMATICS AFTER ARTHROPLASTY

Canadian Orthopaedic Association (COA)



Abstract

Purpose

Measurements of patellar kinematics are essential to investigate the link between anterior knee pain following knee arthroplasty and patellar maltracking. A major challenge in studying the patellofemoral (PF) joint postoperatively is that the patellar component is only partially visible in the sagittal and close-to-sagittal radiographs. The narrow angular distance between these radiographs makes the application of conventional bi-planar fluoroscopy impossible. In this study a methodology has been introduced and validated for accurate estimation of the 3D kinematics of the PF joint post-arthroplasty using a novel multi-planar fluoroscopy approach.

Method

An optoelectronic camera (Optotrak Certus) was used to track the motion of an ISO-C fluoroscopy C-arm (Siemens Siremobil) using two sets of markers attached to the X-ray source and detector housings. The C-arm was used in the Digital Radiography (DR) mode, which resembles an ordinary X-ray fluoroscopy image. A previously-developed technique (Cho et al., 2005; Daly et al., 2008) was adapted to find the geometric parameters of the imaging system. Thirty-eight DRs of the calibration phantom were obtained for the 190 of rotation of the C-arm at 5 rotational increments while data from motion markers were recorded continuously at a frequency of 100 Hz. A total knee replacement prosthesis was implanted on an artificial bone model of the knee, and the implant components and bones were rigidly fixed in place using a urethane rigid foam. For the purpose of validation, positions of the implant components were determined using a coordinate measuring machine (CMM). Sagittal and obliquely sagittal radiographs of the model were taken where the patellar component was most visible. For each DR the geometric parameters of the system were interpolated based on the location of the motion markers. The exact location of the projection was then determined in 3D space. JointTrack Bi-plane software (Dr. Scott Banks, University of Florida, Gainesville) was used to conduct 2D-3D registration between the radiographs and the reverse-engineered models of the implant components. Results of the registration were directly compared to the ground-truth obtained from the CMM to calculate the accuracies.

Results

The accuracies for the PF were found to be 0.48 mm and 1.32 for position and orientation of the components. For the tibiofemoral joint these values were found to be 0.89 mm and 1.43, respectively.

Conclusion

The multi-planar method can be used to assess the sequential kinematics of the patellofemoral and tibiofemoral joints including the mediolateral translation and tilt of the patellar component, which are obscured in standard 2D sagittal measurements and are not possible using the traditional bi-planar setup. A limitation is that it can only be used for static imaging of the joint. It has the advantage of a relatively low radiation dose. This methodology can be used to investigate the relationship between maltracking of the patella and anterior knee pain as well as other postoperative complications.