header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:



Full Access



British Orthopaedic Research Society (BORS)


Staphylococcus aureus is the most common bacterial isolate in septic arthritis. From studies on isolated cartilage cells, the ‘pore-forming’ alpha and gamma toxins are considered the most virulent factors. However, understanding the response of in situ chondrocytes is important in order to identify new treatments to reduce the extent of cartilage damage during, and following, episodes of septic arthritis. Animal models can give useful information; however the interpretation of data can be complex because of the strong immune response. Thus, to clarify the role of S. aureus toxins on in situ chondrocytes we have developed a bovine cartilage explant model.

Metacarpophalangeal joints, from 3-year-old cows, were opened under sterile conditions within 6hrs of slaughter and cartilage explants harvested. Explants were placed into flasks containing Dulbecco's Modified Eagle Medium (DMEM). Aspirates from a patient with septic arthritis of the hip, containing S. aureus, were compared to negative aspirates (no bacterial growth) from a patient with an inflamed knee joint (controls).

The explants were incubated at 37 degrees Celsius and stained after 18, 24 and 40hrs with the fluorescent probes chloromethylfluorescein di-acetate and propidium iodide (10 micromolar each) to label living chondrocytes green and dead cells red respectively. Following imaging of cartilage by confocal laser scanning microscopy, the percentage cell death at each time point was obtained using Volocity 4 software.

There was no detectable change in chondrocyte viability (<1% cell death) over 40hrs incubation with the negative aspirate. However, for the aspirate from a patient positive for S. aureus, there was a rapid increase in cell death between 18 and 24hrs (0.2 +/− 0.3% to 23 +/− 5% cell death respectively) and almost complete cell death at 40hrs (80 +/− 12%; data are means +/− s.d; n=4).

These results show that a strain of S. aureus capable of manifesting clinical disease exerts a potent effect on in situ chondrocytes. In the absence of an immune response, chondrocyte death was purely the result of the bacteria and their products. This bovine cartilage explant model could therefore be useful for studying the effects of S. aureus on chondrocyte behaviour and, ultimately, cartilage integrity.