Abstract
Although chondrocytes have been used for autologous implantation in defects of articular cartilage, limited availability and donor-site morbidity have led to the search for alternative cell sources. Mesenchymal stem cells from various sources represent one option. The infrapatellar fat-pad is a promising source. Advantages include low morbidity, ease of harvest and ex-vivo evidence of chondrogenesis. Expansion of MSCs from human fat-pad in FGF-2 has been shown to enhance chondrogenesis. To further elucidate this process, we assessed the role of TGF-?3, FGF-2 and oxygen tension on growth kinetics of these cells during expansion.
Methods
Infrapatellar fatpads were obtained from 4 donors with osteoarthritis. Cells were expanded in various media formulations (STD, FGF, TGF and FGF/TGF) at both 20% and 5% oxygen tensions. Colony forming unit fibroblast assays were performed for each expansion group and assessed with crystal violet staining. Cell aggregates from each group underwent chondrogenic differentiation in 5% and atmospheric oxygen tension. Pellets were analyzed on day 21.
Results
5% Oxygen tension during expansion increased the colony size for both FGF and FGF/TGF groups. Cells expanded in FGF/TGF proliferated more rapidly. Biochemical analysis revealed that cells expanded in FGF-2 had higher glycosaminoglycan synthesis rates, a marker for chondrogenesis. Differentiation at 5% pO2 led to higher levels of sGAG but its effect was generally less potent compared to expansion in FGF-2.
Discussion
In agreement with previous findings, expansion of fat-pad MSCs in FGF-2 resulted in enhanced chondrogenesis and increased colony forming capacity. Combined FGF-2 and TGF-?3 during expansion decreased the population doubling time but led to decreased matrix synthesis. Differentiation in low oxygen was beneficial to subsequent chondrogenesis. In conclusion, addition of FGF-2 during the expansion phase was the most potent promoter of the subsequent chondrogenesis of hMSCs isolated from the infrapatellar fat-pad.