Abstract
INTRODUCTION
Osteochondral defects are still a challenge for the orthopaedic surgeon, since most of the current surgical techniques lead to fibrocartilage formation and poor subchondral regeneration, often associated to joint stiffness and/or pain.
Thinking of the ideal osteochondral graft from both the surgical an commercial point of view, it should be an off-the-shelf product; this is the research direction and the explanation for the new biomaterials recently proposed to repair osteochondral defect inducing an “in situ” cartilage regeneration starting from the time of the implantation into the defect site.
For the clinical pilot study we performed, a newly developed nanostructured biomimetic scaffold was used to treat chondral and osteochondral lesions of the knee; its safety and manageability, as much as the surgical procedure reproducibility and the clinical outcome, were evaluated in order to test its intrinsic potential without any cells colture aid.
MATERIALS AND METHODS
A new osteochondral scaffold was obtained by enucleating equine collagen type 1 fibrils with hydroxyapatite nanoparticles in 3 different layers with 3 different gradient ratios at physiological conditions.
30 patients (9F, 21M, mean age 29,3yy) affected by either chondral or osteochondral lesions of the knee (8 medial femoral condyles, 5 lateral femoral condyles, 12 patellae, 8 femoral throcleas) underwent the scaffold implantation from January to July 2007. The sizes of the lesions were in between 2 and 6 squared cm. All patients and their clinical outcome were analyzed prospectively at 6, 12, 24 and 36 months using the Cartilage standard Evaluation Form as proposed by ICRS and an high resolution MRI.
RESULTS
We observed a statistically significant scores improvement and function recovery comparing the pre-operative to the follow-up parameters evaluated. Moreover, we noticed a better improvement from 12 to 24mm follow up while the good results gained at 2yy were confirmed at 3yy follow up evaluation. The MOCART scoring scale was used to analyze the MRIs.
In 80% of cases we obtained a complete filling of the cartilage defect and in some patients we even appreciated articular surface congruency. In this series we report 1 failure followed by a re-operation with different technique.
CONCLUSIONS
This new minimally invasive one-step surgical approach to osteochondral defects seems to be an easy and effective procedure. The results obtained are very encouraging and this procedure show satisfactory outcomes even in big osteochondral defects