Abstract
The number of joint revision surgeries is rising, and the complexity of the cases is increasing. In 58% of the revision cases, the acetabular component has to be revised. For these indications, literature decision schemes [Paprosky 2005] point at custom pre-shaped implants. Any standard device would prove either unfeasible during surgery or inadequate in the short term. Studies show that custom-made triflanged implants can be a durable solution with good clinical results. However, the number of cases reported is few confirming that the device is not in widespread use.
Case Report
A patient, female 50 yrs old, diagnosed having a pseudotumor after Resurfacing Arthroplasty for osteo-arthritis of the left hip joint. The revision also failed after 1 y and she developed a pelvic discontinuity. X-ray and Ct scans were taken and sent to a specialized implant manufacturer [Mobelife, Leuven, Belgium]. The novel process of patient-specific implant design comprises three highly automated steps.
In the first step, advanced 3D image processing presented the bony structures and implant components. Analysis showed that anterior column was missing, while the posterior column was degraded and fractured. The acetabular defect was diagnosed being Paprosky 3B. The former acetabular component migrated in posterolateral direction resulting in luxation of the joint. The reconstruction proposal showed the missing bone stock and anatomical joint location.
In the second step, a triflanged custom acetabular metal backing implant was proposed. The bone defect (35ml) is filled with a patient-specific porous structure which is rigidly connected to a solid patient-specific plate. The proposed implant shape is determined taking into account surgical window and surrounding soft tissues. Cup orientation is anatomically analyzed for inclination and anteversion. A cemented liner fixation was preferred (Biomet Advantage 48mm). Screw positions and lengths are pre-operatively planned depending on bone quality, and transferred into surgery using jig guiding technology (Materialise NV, Leuven, Belgium).
In the third step, the implant design was evaluated in a fully patient-specific manner in dedicated engineering (FEA) software. Using the novel automated CT-based methodology, patient-specific bone quality and thickness, as well as individualised muscle attachments and muscle and joint forces were included in the evaluation.
Implants and jig were produced with Additive Manufacturing techniques under ISO 13485 certification, using respectively Selective Laser Melting (SLM) techniques [Kruth 2005] in medical grade Ti6Al4V material, and the Selective Laser Sintering technique using medical grade epoxy monomer. The parts were cleaned ultrasonically, and quality control was performed by optical scanning [Atos2 scanning device, GOM Intl. AG, Wilden, Switzerland]. Sterilization is performed in the hospital.
CONCLUSION
A unique combination of advanced 3D planning, patient-specific designed and evaluated implants and drill guides is presented. This paper illustrates, by means of a clinical case, the novel tools and devices that are able to turn reconstruction of complex acetabular deficiencies into a reliable procedure.