Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

FRICTION AND LUBRICATION BEHAVIOUR OF RECAP HIP RESURFACING IMPLANTS USING SERUM-BASED LUBRICANTS

British Orthopaedic Research Society (BORS)



Abstract

ABSTRACT

The friction and lubrication behaviour of four Biomet ReCap components with a nominal diameter of 52 mm and diametral clearance ranging from 167-178 μm were investigated using a friction hip simulator. Friction testing was carried out using pure bovine serum and aqueous solutions of bovine serum (BS), with and without carboxymethyl cellulose (CMC), adjusted to a range of viscosities (0.001-0.236 Pas). The Stribeck analyses suggested mixed lubrication as the dominant mode with the lowest friction factor of 0.07 at a viscosity of 0.04 Pas.

INTRODUCTION

The femoral resurfacing systems provide an alternative to hemi and total hip arthroplasty and offer several unique advantages including large resurfacing heads (>35–60 mm diameter) allowing increased range of motion (and stability) over the traditional 28 mm artificial hip joints, with excellent tolerances and surface finish leading to a reduction in wear, as well as preserving primary bone with the femoral canal remaining untouched. This work has investigated the friction and lubrication behaviour of four 52 mm metal-on-metal Biomet ReCap components with a clearance of 167-178 μm using serum-based lubricants.

MATERIALS AND METHODS

Four as-cast, high carbon, cobalt-chrome resurfacing systems (supplied by Biomet UK Healthcare Ltd, Swindon) with a nominal diameter of 52 mm each and diametral clearance of 167-178 μm were used in this study. Frictional measurements of all the joints were carried out at University of Bradford, Medical Engineering Department, using a Prosim Hip Joint Friction Simulator (Simulation Solutions Ltd, Stockport, UK). For the friction factors, an average of three independent tests was taken and each test was run using; 100% bovine serum (BS) and then aqueous solutions of 25% v/v BS in distilled water with varying quantities of CMC to obtain viscosities of; 0.0015 Pas (pure BS), 0.0013 Pas (25% BS), 0.00612 Pas (25% BS, 1 g CMC), 0.01274 Pas (25% BS, 2 g CMC) and 0.236 Pas (25% BS, 5 g CMC) at a shear rate of 3000 s-1. All viscosities were measured using a RHEOPLUS/32 V3.40.

RESULTS AND DISCUSSION

The Stribeck curves for all four ReCap components showed a very similar trend, i.e. the friction factors decreased from ∼0.11 to ∼0.07 as the Sommerfeld number increased (i.e. as viscosity increased from 0.0015 to 0.0127 Pas) indicating a mixed lubrication regime up to a viscosity of 0.0127 Pas; above which the friction factor increased to ∼ 0.13 at a viscosity of 0.236 Pas. These results clearly suggest that the Biomet ReCap components showed low friction (at the physiological viscosities ∼0.01 Pas) with mixed lubrication as the dominant mode.