Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

RELIABILITY OF MENTAL 2D/3D MATCHING FOR 3D CUP POSITIONING BASED ON PRE-OPERATIVE 2D PLANNING IN HIPS WITH BONY DEFECTS

The International Society for Computer Assisted Orthopaedic Surgery (CAOS)



Abstract

Cup position planning for total hip replacement (THR) is a complex task which is influenced by several factors. Whereas aspects like appropriate implant fixation and bone stock preservation are rather evaluated according to intra-operative findings, functional analyses using biomechanical hip models can rely on pre-operative imaging. Due to the wide availability and cost-efficiency of X-ray imaging technology along with the common restriction of biomechanical evaluations to the frontal plane, pre-operative imaging for such purposes is usually limited to AP radiographs. One example is biomechanical optimisation based on the so-called BLB score, which has already been introduced into clinical practice. In this approach, the assumed suitability of potential hip centres of rotation (CORs) is presented to the surgeon by applying colour-coding within the pre-operative AP radiograph. However, to realise the plan, the surgeon has to transfer the 2D positions presented in the radiograph into the 3D surgical site.

We developed a CT-based simulation tool allowing for the generation of 3D bone surface models as well as standardised digitally reconstructed radiographs (DRRs). Within a 3D view, the cup, which is represented as a hemisphere, can freely be shifted in the coronal plane. The 2D point corresponding to the COR defined by the hemisphere is then automatically computed.

In our study, four CT datasets of hips with large bony defects were used. After segmentation 3D bone surface models were generated. These bone surface models were aligned on the basis of the pelvic coordinate system [3], and standardised AP DRRs were computed. BLB score evaluation in intact hips assumes that the central beam passes through the centroid of both hip CORs. As only the contra-lateral hip COR was available due to the defects, a virtual ipsi-lateral COR was obtained by mirroring the contra-lateral hip across the mid-sagittal plane.

Twelve surgeons (divided into two groups of six each according to their experience) had the task to shift the cup such that its 3D position would best match a predefined 2D target position, which was close to the virtual ipsi-lateral COR and displayed as a cross within the standardised DRR. However, the current 2D position corresponding to the current 3D position was not revealed during positioning. Once the user was satisfied with the 3D position, the corresponding 2D position was recorded.

The following results were obtained (mean ± SD across six surgeons of the respective group) for the four patients:

x-error, more experienced: 2.0 ± 6.1; −3.0 ± 5.9; 4.1 ± 4.8; 2.1 ± 5.2; x-error, less experienced: 4.3 ± 4.2; −3.1 ± 1.8; 1.9 ± 4.0; 5.2 ± 4.1; |x-error|, more experienced: 5.2 ± 3.0; 5.4 ± 3.2; 5.5 ± 2.7; 4.3 ± 3.0;|x-error|, less experienced: 4.3 ± 4.2; 3.1 ± 1.8; 3.3 ± 2.7; 5.7 ± 3.3; y-error, more experienced: 12.0 ± 9.1; 0.3 ± 4.3; 6.2 ± 6.6; 1.9 ± 3.2;

y-error, less experienced: 6.1 ± 3.1; 0.8 ± 4.0; 2.4 ± 5.5; 1.4 ± 4.1;|y-error|, more experienced: 12.0 ± 9.1; 3.2 ± 2.6; 6.2 ± 6.6; 3.0 ± 1.9;|y-error|, less experienced: 6.1 ± 3.1; 3.4 ± 1.6; 4.6 ± 3.3; 3.2 ± 2.6;total error, more experienced: 13.5 ± 8.9; 6.6 ± 3.5; 9.8 ± 4.1; 5.4 ± 3.4;total error, less experienced: 8.5 ± 2.7; 4.9 ± 1.5; 6.5 ± 2.5; 6.7 ± 3.8.

Our experimental results show that mental 2D/3D matching for cup positioning in pelvises with bony defects is a difficult task, and that mental 2D/3D matching cannot be expected to yield the correct 3D cup positions corresponding to positions predefined in radiographs. The largest errors were found in the patient with the lowest image quality suggesting that image quality plays an important role. On contrary, experience was not found to be an important factor.

We believe that in clinical practice mental 2D/3D matching between pre-operative radiographs and the surgical site without the help of 3D imaging or special tools would be more difficult than the task given in this study because only small portions of the pelvis would be exposed. Furthermore, as additional aspects of cup positioning would need to be taken into consideration simultaneously, the mental load could be expected to be higher. We conclude that in hips with large bony defects cup positioning based on pre-operative radiographs is highly unreliable without additional computer-assistance or intra-operative imaging. If pre-operative radiographs are needed for functional analyses, combination with 3D image data seems attractive: Firstly, 3D images can easily be used for navigation; secondly, they allow for the generation of highly standardised views, which is essential for comparability across multiple patients.

Future studies relying on more datasets with a wider range of defects could also investigate whether cranio-caudal or medio-lateral positioning errors prevail. This is an interesting question since the BLB score usually is much more specific in the medio-lateral direction than in the cranio-caudal direction, implying that correct 2D/3D matching for the cranio-caudal direction appears less important. In the current study involving only four hips, however, no clear tendency could be observed.

This work has been funded in part by the German Ministry for Education and Research (BMBF) in the framework of the orthoMIT project under grant No. BMBF 01EQ0802/BMBF 01IBE02C.