Abstract
Articular cartilage has a limited regeneration capacity, and damage of cartilage often results in the onset of degenerative disease such as osteoarthritis (OA). MRI and CT imaging of cartilage and subchondral bone are becoming increasingly important in early detection and treatment of OA as well as for quantifying quality of tissue-engineered samples. Non-invasive CT scanners have been used to image cartilage tissue with the help of contrast agents. However, since only one energy source is available, imaging information of multiple soft and hard tissues is lost given that the overall x-ray attenuation is measured. Medipix All Resolution System (MARS) CT offers the possibility of applying more than one energy source. It is able to measure the energy of each photon individually and therefore determines the characteristics of attenuation.
In this study, an ionic contrast agent (Hexabrix) was used to image the negatively charged extra-cellular matrix component, glycosaminoglycan (GAG), which is abundantly found in the middle and lower layers of healthy cartilage tissue. GAG distribution in the cartilage tissue could be imaged using an inverse relationship with Hexabrix signal (i.e. high signal represents low GAG content). Eight bovine cartilage-bone explants (3mm × 5mm) were incubated in 4 different Hexabrix concentrations ranging from 20% to 50% in PBS. Sections were imaged using the MARS scanner at high and low energies (13.32 keV and 30.84 keV). Images were pre-processed, reconstructed and colour-coded using different enhancement techniques and virtual experimental software. Histological (Safranin-O) staining and quantitative biochemical analysis of GAG content (DMMB dye assay) was performed to correlate GAG distribution and content with MARS-CT images.
High resolution images of both cartilage and bone regions were obtained, with contrast enhanced CT of cartilage correlating well with histological staining. X-ray attenuation was high in regions poor in GAG content, whereas attenuation was low in GAG rich regions. Furthermore, there was a direct inverse correlation between Hexabrix signal and GAG content as measured in superficial (2.9 μg/mg) and middle/deep regions (10.6 μg/mg) in cartilage explants.
It can be concluded that the MARS technique can be used to image GAG distribution and GAG content, and therefore could be used clinically to assess quality of healthy or osteoarthritic cartilage, as well as non-destructive imaging of GAG content in engineered tissues.