Abstract
The prevalence of anterior knee pain in the general population is relatively high. Patellar height, and more specific patella alta, is one of the several factors that have been associated with anterior knee pain, but the precise mechanism by which patella alta leads to a less favourable situation in terms of patellofemoral contact force, contact area and contact pressure, is poorly understood. The recent availability of validated dynamic knee simulators and advances in the analysis of contact force and area, give us today the possibility to study the influence of patellar position and patellar height on patellofemoral biomechanical characterisitics. Simulating a knee squat in different configurations with variable predetermined patellar height, reveals a clear association of patella alta with the highest maximal patellofemoral contact force and contact pressure, probably as a consequence of the delay in tendofemoral contact. When averaged across all flexion angles, the normal height of the patella seems to be the most optimal position in terms of contact pressures. This may provide a biomechanical explanation for anterior knee pain in young patients with patella alta and in older patients following total knee prosthesis resulting in an altered patellar position in terms of height.