header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

The Influence of the Tibial Slope on the Intra-Operative Soft Tissue Balance in Posterior-Stabilizedtotal Knee Arthroplasty

The International Society for Technology in Arthroplasty (ISTA)



Abstract

Introductions

In cruciate-retaining total knee arthroplasty (TKA), among many factors influencing post-operative outcome, increasing the tibial slope has been considered as one of the beneficial factors to gain deep flexion because of leading more consistent femoral rollback and avoiding direct impingement of the insert against the posterior femur. In contrast, whether increasing the tibial slope is useful or not is controversial in posterior-stabilized (PS) TKA, Under such recognition, accurate soft tissue balancing is also essential surgical intervention for acquisition of successful postoperative outcomes in TKA. In order to permit soft tissue balancing under more physiological conditions during TKAs, we developed an offset type tensor to obtain soft tissue balancing throughout the range of motion with reduced patello-femoral(PF) and aligned tibiofemoral joints and have reported the relationship between intra-operative soft tissue balance and flexion angles. In this study, we therefore assessed the relationship between intra-operative soft tissue balance assessed using the tensor and the tibial slope in PS TKA.

Materials and methods

Thirty patients aged with a mean 72.6 years were operated PS TKA(NexGen LPS-Flex, Zimmer, Inc. Warsaw, IN) for the varus type osteoarthritis. Following each bony resection and soft tissue release using measure resection technique, the tensor was fixed to the proximal tibia and femoral trial prosthesis was fitted. Assessment of the joint component gap (mm) and the ligament balance in varus (°)was carried out at 0, 10, 45, 90and 135degrees of knee flexion. The joint distraction force was set at 40lbs. Joint component gap change values during 10-0°,45-0°, 90-0°, 135-0° flexion angle were also calculated. The tibial slopes were measured by postoperative lateral radiograph. The correlation between the tibial slope and values of soft tissue balance were assessed using linear regression analysis.

Results

Average joint component gaps were 11.2, 14.7, 16.7, 18.4 and 17.0 mm and ligament balance in varus were 2.2, 2.9, 5.3, 6.8 and 6.9°at 0, 10, 45, 90 and 135° of flexion, respectively. Average joint component gap changes were 3.5, 5.6, 7.2 and 5.7 mm at each range of motion between 10–0, 45-0, 90–0 and 135–0° of flexion, respectively. The mean tibial slope was 5.0(1.6–9.6) degrees. Joint component gap at 90 (R = 0.537, p<0.01),135(R=0.463, p<0.05) degrees of flexion, and joint component gap change value of 90–0° (R = 0.433, p<0.05) showed positive correlations with tibial slope. The other factors assessed in this study showed no correlation with tibial slope.

Discussions

The joint gap toward mid-range of flexion might be measured at anterior part of the tibiofemoral joint, whereas the values of joint gap at high flexion where the femur shifted posterior due to femoral rollback were measured the widened posterior part of the joint gap. In addition, extensor mechanism as well as tibial slope might influence joint gap at deep flexion. In conclusion, even PS TKA, increasing the posterior tibial slope resulting in larger flexion gap compared to extension gap should be taken into account for the flexion-extension gap balancing.


∗Email: Shinya-oka@amail.plala.or.jp