Abstract
The current generation of knee replacements are based upon assumptions from kinematic studies that preceded their designs. These implants were further limited by practical restrictions imposed by affordability, materials and manufacturing, and finally by the methods available to surgeons to prepare the bone and implant them. The early designs of knee seldom distinguished left from right, as the early kinematic work had not appreciated the very different functions of the medial and lateral compartments. Trochlea shape and position within devices was also limited by the published work on the way the knee bends. Surgical insertion has been limited to landmark based registration, and adjustment of the kinematics by soft tissue releases. However accurately such operations were performed, they could not restore normal function, as the kinematics of the joint were quite different from the normal knee.
Recently, we have begun to appreciate three distinct axes of the knee joint: the flexion axis, the extension axis and the trochlea axis. These can be reliably found from 3d imaging, but cannot be immediately established by eye, or by conventional jigs, which must rely on unreliable landmarks acquired in surgery.
The current market leaders in knee joint sales do not reflect these three axes in their joint designs, so the instrumentation used to insert them cannot restore the kinematics of the normal knee. The emerging partial replacements can be designed to take the axes and their resulting kinematics into account. If they are then inserted using robotic assistance, or patient specific guides, they can restore joints to these axes reliably. Knee function following such conservative surgery reflects this improvement in kinematics with higher functional scores and faster top walking speeds than has ever been possible using conventional devices inserted using the conventional landmark based surgical techniques.