Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

FATIGUE STRENGTH ASSESSMENT OF A NOVEL LIGHT-CURABLE BONE FIXATION TECHNIQUE

The European Orthopaedic Research Society (EORS) 32nd Annual Meeting, Aalborg, Denmark, 18–20 September 2024.



Abstract

Introduction

When designing a new osteosynthesis device, the biomechanical competence must be evaluated with respect to the acting loads. In a previous study, the loads on the proximal phalanx during rehabilitation exercises were calculated. This study aimed to assess the safety of a novel customizable osteosynthesis device compared to those loads to determine when failure would occur.

Method

Forty proximal phalanges were dissected from skeletally mature female sheep and divided into four testing groups. A custom 3D printed cutting and drilling guide was used to create a reduced osteotomy and pilot holes to insert four 1.5 mm cortical screws. A novel light-curable polymer composite was used to fixate the bones with an in situ fixation patch. The constructs were tested in cyclic four-point bending in a bioreactor with ringer solution at 37°C with a valley load of 2 N. Four groups (N = 10) had increasing peak loads based on varying safety factors relative to the physiological loading (G1:100x, G2:150x, G3:175x, G4:250x). Each specimen was tested for 12,600 cycles (6 weeks of rehabilitation) or until failure occurred. After the test the thickness of the patch was measured with digital calipers and data analysis was performed in Python and R.

Result

All samples survived in G1, and all failed in G4. G2 and G3 had 1 and 8 failures, respectively. There was no significant difference in patch thickness in all survivor samples against failures (p = 0.131), however, there was a significant difference in the displacement amplitude in the final cycle (0.072 mm vs. 0.15 mm; p < 0.001).

Conclusion

This study found the survival and failure limits of a novel osteosynthesis device as a function of physiological loading. These results indicate that such fixations could withstand 100x the loading for typical non-weightbearing rehabilitation. Further studies are needed to confirm the safety for other conditions.


Corresponding author: Peter Varga