header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

THE DEVELOPMENT OF HYALURONIC ACID/COLLAGEN-BASED HYDROGEL TOWARDS THE NUCLEUS PULPOSUS NICHE IN FACILITATING STEM CELL TRANSPLANTATION TO MODULATE PAIN

The International Combined Orthopaedic Research Societies (ICORS), World Congress of Orthopaedic Research, Edinburgh, Scotland, 7–9 September 2022. Part 3 of 3.



Abstract

The extracellular matrix (ECM)-based biomaterials provide a platform to mimic the disc microenvironment in facilitating stem cell transplantation for tissue regeneration. However, little is known about in vitro preconditioning human umbilical cord Wharton Jelly-derived mesenchymal stem cells (MSCs) on 3D hyaluronic acid (HA)/type II collagen (COLII) hydrogel for nucleus pulposus (NP) phenotype and pain modulation.

We developed a tuneable 3D HA/COLII by fabricating HA/COLII hydrogel at 2 mg/ml COLII and various weight ratios of HA:COLII, 1:9 and 4.5:9. The hydrogel was characterized for degradability, stability, and swelling capacity. The viability of hWJ-MSC encapsulated on hydrogel supplemented with TGF-β3 was assessed. The implantation of HA/COLII hydrogel was done in surgically induced disc injury model of pain in the rat tail. The general health status in rats was monitored. The nociceptive behaviour in rats was performed for mechanical allodynia using von Frey test.

The HA/COLII 4.5:9 hydrogel showed higher swelling capacity than weight ratio 1:9, suggesting that a higher amount of HA can absorb a large amount of water. Both HA/COLII 4.5:9 and 1:9 hydrogel formulations had a similar degradation profile, stable to the hydrolytic process. The hWJ-MSC-encapsulated on hydrogel marked higher cell viability with round morphology shape of cells in vitro. The surgically induced disc injury in the rat tail evoked mechanical allodynia, without affecting general health status in rats. The implantation of HA/COLII 1:9 hydrogel was observed to slightly alleviate injury-induced mechanical allodynia.

Fine-tuning HA/COLII-based hydrogel provides the optimal swelling capacity, stability, degradability, and non-cytotoxic, mimicking the 3D NP niche in guiding hWJ-MSCs towards NP phenotype. The HA/COLII hydrogel could be employed as an advanced cell delivery system in facilitating stem cell transplantation for intervertebral disc regeneration targeting pain.


Email: