header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

RISK FACTORS FOR DISTAL CONSTRUCT FAILURE IN POSTERIOR SPINAL INSTRUMENTED FUSION FOR ADOLESCENT IDIOPATHIC SCOLIOSIS: A RETROSPECTIVE COHORT STUDY

The New Zealand Orthopaedic Association and the Australian Orthopaedic Association (NZOA AOA) Combined Annual Scientific Meeting, Christchurch, New Zealand, 31 October – 3 November 2022. Part 1 of 2.



Abstract

The purpose of this study is to evaluate risk factors for distal construct failure (DCF) in posterior spinal instrumented fusion (PSIF) in adolescent idiopathic scoliosis (AIS). We observed an increased rate of DCF when the pedicle screw in the lowest instrumented vertebra (LIV) was not parallel to the superior endplate of the LIV, however this has not been well studied in the literature. We hypothesise a more inferiorly angled LIV screw predisposes to failure and aim to find the critical angle that predisposes to failure.

A retrospective cohort study was performed on all patients who underwent PSIF for AIS at the Starship Hospital spine unit from 2010 to 2020. On a lateral radiograph, the angle between the superior endplate of the LIV was measured against its pedicle screw trajectory. Data on demographics, Cobb angle, Lenke classification, instrumentation density, rod protrusion from the most inferior screw, implants and reasons for revision were collected.

Of 256 patients, 10.9% (28) required at least one revision. The rate of DCF was 4.6% of all cases (12 of 260) and 25.7% of revisions were due to DCF. The mean trajectory angle of DCF patients compared to all others was 13.3° (95%CI 9.2° to 17.4°) vs 7.6° (7° to 8.2°), p=0.0002. The critical angle established is 11°, p=0.0076. Lenke 5 and C curves, lower preoperative Cobb angle, titanium only rod constructs and one surgeon had higher failure rates than their counterparts. 9.6% of rods protruding less than 3mm from its distal screw disengaged.

We conclude excessive inferior trajectory of the LIV screw increases the rate of DCF and a screw trajectory greater than 11° predisposes to failure. This is one factor that can be controlled by the surgeon intraoperatively and by avoiding malposition of the LIV screw, a quarter of revisions can potentially be eliminated.


* Email: