Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

BIOMECHANICAL EFFECT OF A TRI-COMPARTMENT OFFLOADER KNEE BRACE ON KNEE FUNCTION AND PAIN DURING STAIR DESCENT IN INDIVIDUALS WITH MULTICOMPARTMENT KNEE OSTEOARTHRITIS

The Canadian Orthopaedic Association (COA) and Canadian Orthopaedic Research Society (CORS) Annual General Meeting, Quebec City, Quebec, Canada, 8–11 June 2022. Part 2 of 2.



Abstract

Individuals with multi-compartment knee osteoarthritis (KOA) frequently experience challenges in activities of daily living (ADL) such as stair ambulation. The Levitation “Tri-Compartment Offloader” (TCO) knee brace was designed to reduce pain in individuals with multicompartment KOA. This brace uses novel spring technology to reduce tibiofemoral and patellofemoral forces via reduced quadriceps forces. Information on brace utility during stair ambulation is limited. This study evaluated the effect of the TCO during stair descent in patients with multicompartment KOA by assessing knee flexion moments (KFM), quadriceps activity and pain.

Nine participants (6 male, age 61.4±8.1 yrs; BMI 30.4±4.0 kg/m2) were tested following informed consent. Participants had medial tibiofemoral and patellofemoral OA (Kellgren-Lawrence grades two to four) diagnosed by an orthopaedic surgeon.

Joint kinetics and muscle activity were evaluated during stair descent to compare three bracing conditions: 1) without brace (OFF); 2) brace in low power (LOW); and 3) brace in high power (HIGH). The brace spring engages from 60° to 120° and 15° to 120° knee flexion in LOW and HIGH, respectively. Individual brace size and fit were adjusted by a trained researcher.

Participants performed three trials of step-over-step stair descent for each bracing condition. Three-dimensional kinematics were acquired using an 8-camera motion capture system. Forty-one spherical reflective markers were attached to the skin (on each leg and pelvis segment) and 8 markers on the brace. Ground reaction forces and surface EMG from the vastus medialis (VM) and vastus lateralis (VL) were collected for the braced leg. Participants rated knee pain intensity performing the task following each bracing condition on a 10cm Visual Analog Scale ranging from “no pain” (0) to “worst imaginable pain” (100).

Resultant brace and knee flexion angles and KFM were analysed during stair contact for the braced leg. The brace moment was determined using brace torque-angle curves and was subtracted from the calculated KFM. Resultant moments were normalized to bodyweight and height. Peak KFMs were calculated for the loading response (Peak1) and push-off (Peak2) phases of support. EMG signals were normalized and analysed during stair contact using wavelet analysis. Signal intensities were summed across wavelets and time to determine muscle power.

Results were averaged across all 3 trials for each participant. Paired T-tests were used to determine differences between bracing conditions with a Bonferroni adjustment for multiple comparisons (α=0.025).

Peak KFM was significantly lower compared to OFF with the brace worn in HIGH during the push-off phase (p Table 1: Average peak knee flexion moments, quadriceps muscle power and knee pain during stair descent in 3 brace conditions (n=9).

Quadriceps activity, knee flexion moments and pain were significantly reduced with TCO brace wear during stair descent in KOA patients. These findings suggest that the TCO assists the quadriceps to reduce KFM and knee pain during stair descent. This is the first biomechanical evidence to support use of the TCO to reduce pain during an ADL that produces especially high knee forces and flexion moments.

For any figures or tables, please contact the authors directly.


Email: