Abstract
Excessive resident duty hours (RDH) are a recognized issue with implications for physician well-being and patient safety. A major component of the RDH concern is on-call duty. While considerable work has been done to reduce resident call workload, there is a paucity of research in optimizing resident call scheduling. Call coverage is scheduled manually rather than demand-based, which generally leads to over-scheduling to prevent a service gap. Machine learning (ML) has been widely applied in other industries to prevent such issues of a supply-demand mismatch. However, the healthcare field has been slow to adopt these innovations. As such, the aim of this study was to use ML models to 1) predict demand on orthopaedic surgery residents at a level I trauma centre and 2) identify variables key to demand prediction.
Daily surgical handover emails over an eight year (2012-2019) period at a level I trauma centre were collected. The following data was used to calculate demand: spine call coverage, date, and number of operating rooms (ORs), traumas, admissions and consults completed. Various ML models (linear, tree-based and neural networks) were trained to predict the workload, with their results compared to the current scheduling approach. Quality of models was determined by using the area under the receiver operator curve (AUC) and accuracy of the predictions. The top ten most important variables were extracted from the most successful model.
During training, the model with the highest AUC and accuracy was the multivariate adaptive regression splines (MARS) model, with an AUC of 0.78±0.03 and accuracy of 71.7%±3.1%. During testing, the model with the highest AUC and accuracy was the neural network model, with an AUC of 0.81 and accuracy of 73.7%. All models were better than the current approach, which had an AUC of 0.50 and accuracy of 50.1%. Key variables used by the neural network model were (descending order): spine call duty, year, weekday/weekend, month, and day of the week.
This was the first study attempting to use ML to predict the service demand on orthopaedic surgery residents at a major level I trauma centre. Multiple ML models were shown to be more appropriate and accurate at predicting the demand on surgical residents as compared to the current scheduling approach. Future work should look to incorporate predictive models with optimization strategies to match scheduling with demand in order to improve resident well being and patient care.