Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

SALFORD TECHNIQUE OF CORRECTION OF ROTATIONAL DEFORMITY IN LOWER LIMBS

The British Limb Reconstruction Society (BLRS) 2021 Annual Scientific Meeting, Virtual Conference, held online, 15 April 2021.



Abstract

Introduction

The most challenging aspect in rotational deformity correction is translating the pre-operative plan to an accurate intra-operative correction. Landmarks away from the osteotomy site are typically employed at pre-operative planning and this can render inadequate correction. Our proposed technique of pre-operative planning using CT scan and leg length radiographs can translate to accurate intra-operative correction.

Materials and Methods

A circle was superimposed at osteotomy site with its centre serving as the centre of correction of rotation. Medio-lateral distance at osteotomy site measured and used as diameter of the circle. Circumference of the circle was calculated by multiplying diameter with Pi and used in the below formula to obtain accurate de-rotation distance;

Derotation distance = (Circumference/360) × correction value for desired ante-version

The exact site of osteotomy was measured in theatre under C-arm and exposed. Derotation distance was marked on the surface of bone as point A and point B with a flexible ruler. Osteotomy performed with saw and derotation was done till point A and point B were co-linear. Derotation distance obtained using this technique is specific for the site of chosen osteotomy and implies a specific degree of correction for every millimeter derotated.

Distal femur was the chosen site of osteotomy if there was associated patellar instability and proximal femur if there was no patellar instability

Results

We have used the above technique to successfully correct rotational malalignment of femur and tibia in three patients thus far. The foot progression angle improved in all patients following surgery. One patient had post-operative CT scan of the hips which showed accurate reduction of ante-version

Conclusions

Our new technique of rotational deformity correction is simple and reproducible using commonly available tools as CT scan and leg length radiographs. This technique effectively translates the pre-operative plan to accurate intra-operative correction of rotational deformity