Abstract
Background
Systemically administered vancomycin may provide insufficient target-site concentrations. Intraosseous vancomycin administration has the potential to overcome this concern by providing high target-site concentrations.
Aim
To evaluate the local bone and tissue concentrations following tibial intraosseous vancomycin administration in a porcine model.
Method
Eight female pigs were assigned to receive 500 mg diluted vancomycin (50 mg/mL) through an intraosseous cannula into the proximal tibial cancellous bone. Microdialysis was applied for sampling of vancomycin concentrations in tibial cancellous bone adjacent to the intraosseous cannula, in cortical bone, in the intramedullary canal of the diaphysis, in the synovial fluid of the knee joint, and in the subcutaneous tissue. Plasma samples were obtained. Samples were collected for 12 hours.
Results
High vancomycin concentrations were found in the tibial cancellous bone with a mean peak drug concentration of 1,236 (range 28–5,295) µg/mL, which remained high throughout the sampling period with a mean end concentration of 278 (range 2.7–1,362.7) µg/mL after 690 min. The mean (standard derivation (SD)) peak drug concentration in plasma was 19 (2) µg/mL, which was obtained immediately after administration. For the intramedullary canal, in the synovial fluid of the knee joint, and subcutaneous tissue, comparable mean peak drug concentration and mean time to peak drug concentration were found in the range of 7.5–8.2 µg/mL and 45–70 min, respectively.
Conclusions
Tibial intraosseous administration of vancomycin provided high mean concentrations in tibial cancellous bone throughout a 12-hour period, but with an immediate and high systemic absorption. The concentrations in cancellous bone had an unpredictable and wide range of peak concentration. Low mean concentrations were found in all the remaining compartments. Our findings suggest that intraosseous vancomycin administration in proximal tibial cancellous bone only is relevant as treatment in cases requiring high local concentrations nearby the intraosseous cannula.