Abstract
Three-dimensional (3D) printing has become more frequently used in surgical specialties in recent years. Orthopaedic surgery is particularly well-suited to 3D printing applications, and thus has seen a variety of uses for this technology. These uses include pre-operative planning, patient-specific instrumentation (PSI), and patient-specific implant production. As with any new technology, it is important to assess the clinical impact, if any, of three-dimensional printing.
The purpose of this review was to answer the following questions:
What are the current clinical uses of 3D printing in orthopaedic surgery?
Does the use of 3D printing have an effect on peri-operative outcomes?
Four electronic databases (Embase, MEDLINE, PubMed, Web of Science) were searched for Articles discussing clinical applications of 3D printing in orthopaedics up to November 13, 2018. Titles, abstracts, and full texts were screened in duplicate and data was abstracted. Descriptive analysis was performed for all studies. A meta-analysis was performed among eligible studies to compare estimated blood loss (EBL), operative time, and fluoroscopy use between 3D printing cases and controls. Study quality was assessed using the Methodological Index for Non-Randomized Studies (MINORS) criteria for non-randomized studies and the Cochrane Risk of Bias Tool for randomized controlled trials (RCTs). This review was prospectively registered on PROSPERO (Registration ID: CRD42018099144).
One-hundred and eight studies were included, published between 2012 and 2018. A total of 2328 patients were included in these studies, and 1558 patients were treated using 3D printing technology. The mean age of patients, where reported, was 47 years old (range 3 to 90). Three-dimensional printing was most commonly reported in trauma (N = 41) and oncology (N = 22). Pre-operative planning was the most common use of 3D printing (N = 63), followed by final implants (N = 32) and PSI (N = 22). Titanium was the most commonly used 3D printing material (16 studies, 27.1%). A wide range of costs were reported for 3D printing applications, ranging from “less than $10” to $20,000. The mean MINORS score for non-randomized studies was 8.3/16 for non-comparative studies (N = 78), and 17.7/24 for non-randomized comparative studies (N = 19). Among RCTs, the most commonly identified sources of bias were for performance and detection biases. Three-dimensional printing resulted in a statistically significant decrease in mean operative time (−15.6 mins, p < .00001), mean EBL (−35.9 mL, p<.00001), and mean fluoroscopy shots (−3.5 shots, p < .00001) in 3D printing patients compared to controls.
The uses of 3D printing in orthopaedic surgery are growing rapidly, with its use being most common in trauma and oncology. Pre-operative planning is the most common use of 3D printing in orthopaedics. The use of 3D printing significantly reduces EBL, operative time, and fluoroscopy use compared to controls. Future research is needed to confirm and clarify the magnitude of these effects.