Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

2018 J.A. NUTTER AWARD WINNER: TRACKING SHOULDER PHYSIOTHERAPY WITH WEARABLE SENSORS AND AI

The Canadian Orthopaedic Association (COA) and The International Combined Orthopaedic Research Societies (ICORS) Meeting, Montreal, Canada, June 2019. Part 3.



Abstract

Participation in a physical therapy program is considered one of the greatest predictors for successful conservative management of common shoulder disorders, however, adherence to standard exercise protocols is often poor (around 50%) and typically worse for unsupervised home exercise programs. Currently, there are limited tools available for objective measurement of adherence and performance of shoulder rehabilitation in the home setting. The goal of this study was to develop and evaluate the potential for performing home shoulder physiotherapy monitoring using a commercial smartwatch. We hypothesize that shoulder physiotherapy exercises can be classified by analyzing the temporal sequence of inertial sensor outputs from a smartwatch worn on the extremity performing the exercise.

Twenty healthy adult subjects with no prior shoulder disorders performed seven exercises from a standard evidence-based rotator cuff physiotherapy protocol: pendulum, abduction, forward elevation, internal/external rotation and trapezius extension with a resistance band, and a weighted bent-over row. Each participant performed 20 repetitions of each exercise bilaterally under the supervision of an orthopaedic surgeon, while 6-axis inertial sensor data was collected at 50 Hz from an Apple Watch. Using the scikit-learn and keras platforms, four supervised learning algorithms were trained to classify the exercises: k-nearest neighbour (k-NN), random forest (RF), support vector machine classifier (SVC), and a deep convolutional recurrent neural network (CRNN). Algorithm performance was evaluated using 5-fold cross-validation stratified first temporally and then by subject.

Categorical classification accuracy was above 94% for all algorithms on the temporally stratified cross validation, with the best performance achieved by the CRNN algorithm (99.4± 0.2%). The subject stratified cross validation, which evaluated classifier performance on unseen subjects, yielded lower accuracies scores again with CRNN performing best (88.9 ± 1.6%).

This proof-of concept study demonstrates the feasibility of a smartwatch device and machine learning approach to more easily monitor and assess the at-home adherence of shoulder physiotherapy exercise protocols. Future work will focus on translation of this technology to the clinical setting and evaluating exercise classification in shoulder disorder populations.


Email: