Abstract
The burden of osteoporosis (OP), and its accompanied low energy fractures, is ever increasing. Targeted therapies are under development to stem the tide of the disease, with microRNAs identified as biomarkers and potential targets. Assessing the functional capacity of bone marrow mesenchymal stromal cells (BMSC) from patients with low energy neck of femur fractures (NOF) will identify the expected outcomes to be achieved from new, targeted osteogenic therapies.
Two patient groups were assessed; low energy NOF and osteoarthritic. Bone marrow aspirates were taken at time of arthroplasty surgery. The adherent fraction was cultured and assessed by flow cytometry, microRNA expression and differentiation functionality.
Both patient groups demonstrated characteristic extracellular markers of BMSCs. 3 key markers were significantly reduced in their expression in the NOF group (CD 90, 13, 166 P=0.0286). Reduced differentiation capacity was observed in the NOF group when cultured in osteogenic and adipogenic culture medium. 105 microRNAs were seen to be significantly dysregulated, with microRNAs known to be crucial to osteogenesis and disease process such as osteoporosis abnormally expressed.
This data demonstrates the impaired functional capacity of BMSCs and their abnormal microRNA expression in patients who suffer a low energy NOF. Future targeted therapies for OP must address this to maximise their restorative effect on diseased bone. The important role microRNAs can play as biomarkers and target sites has been further reinforced.