header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Trauma

THE TREATMENT OF HUMERAL FRACTURE NONUNION BY HYBRID ILIZAROV FRAME FIXATION WITHOUT BONE GRAFT

British Limb Reconstruction Society (BLRS) Annual Conference, Southampton, March 2018



Abstract

Background

Humerus fracture non-union is a challenge for which a wide range of treatments exist. We present our experience of managing these by hybrid Ilizarov frame fixation, without bone graft or debridement of the non-union site.

Methods

Case notes review of a consecutive series of 20 patients treated for aseptic humeral non-union between 2004 and 2016. Eighteen patients had previous plate or intramedullary nail fixations, and 2 had no prior surgery. During Ilizarov application, any existing metalwork preventing dynamisation of the fracture site was removed through minimal incisions before compression of the fracture site was then achieved. Only 3 patients had open debridement or osteotomy of the non-union site, otherwise all other patients had no debridement of their non-union.

Results

Bony union was achieved in 17 patients (85%), with a further 2 achieving a functional fibrous union. The remaining patient subsequently had successful open surgery. Union rates were 66% (2/3) and 88% (15/17) for the debridement/osteotomy and non-debridement groups respectively. Mean frame duration was 193 days. One patient was treated for pin-site infection. The Chertsey Outcome Score for Trauma was used to assess patient reported outcomes.

Conclusions

Simple changes to the physical properties acting upon a humeral non-union, such as adequate control of its strain environment and restoration of the mechanical axis, are enough on their own to initiate healing. In our practice, this eliminates any morbidity associated with extensive fracture debridements or donor harvest sites.


E-mail: