Abstract
Introduction
Offset femoral broach handles have become more common as the anterior approach in total hip arthroplasty has increased in popularity. The difference in access to the femur compared to a posterior approach necessitates anterior and, in some cases, lateral offsets incorporated into the design of the broach handle to avoid interference with the patient's body and to ensure accessibility of the strike plate.
Using a straight broach handle with a primary stem, impaction force is typically directed along the axis of the femoral broach. However, the addition of one or more offsets to facilitate an anterior approach results in force transmission in the transverse plane, which is unnecessary for eating the femoral broach. The direction of forces transmitted to the broach via strike plate impaction can introduce a large moment. A negative consequence of this moment is the amplification of stresses/strains at the bone/broach interface, which increases the likelihood of femoral fracture during impaction.
It was proposed that optimizing the angle of the strike plate could minimize the moment to reduce the unintended stresses/strains at the bone/broach interface.
Objectives
The objective was to minimize the stresses/strains imparted to the proximal aspect of the bone femur when broaching with a given dual offset broach handle design.
Methods
Trigonometric calculations were used to optimize the strike plate angle for a given dual offset broach handle design. The point of intersection of the stem axis and transverse plane that intersects the medial calcar of the smallest size broach was assumed to be the ideal location of zero moment, given that intraoperative fractures related to this issue tend to occur in the proximal region of the femur. The strike plate was angled anteriorly and laterally such that the impaction force vector is directed at this point of intersection, thus negating the moment at this point.
A prototype broach handle body was fabricated to accept different strike plates. Of the two strike plates tested, one strike plate was made such that the impaction surface followed the optimized angle, while the other simulated the strike plate angle of a previous, non-optimized design. Each broach handle configuration was connected to an identical broach and implanted into one of two identical Sawbones® femoral models. Equal loads were placed on the strike plates of each handle perpendicular to the strike plate angles. Digital image correlation was used to compare the resultant strains in both samples.
Results
Testing demonstrated a 30% reduction in maximum strain on the proximal aspect of the bone using the broach handle with the optimized strike plate.
Conclusions
While the optimal strike plate angle is dependent on the individual broach handle design, this method of optimization can be applied to the design of any offset broach handle. Optimization of offset broach handle strike plate angles could reduce the incidence of intraoperative femoral fractures when broaching by reducing the stresses/strains on the proximal aspect of the femur.