Abstract
Introduction
Ligament balancing in performing TKA is an upcoming topic to improve the results in TKA. A well balanced knee is working more proper together with the muscular stabilizing structures. Dynamic ligament balancing (DLB)R should give us the opportunity to check the balance of the ligaments at the beginning and the end of the surgery before implanting the definitive prosthesis. It is a platform independent, single-use device, which can be combined with all common types of knee prosthesis.
Materials and Methods
DLBR consists of a set of 10 different sizes of baseplates including a feather of 15 to 20N (A). Connected to a tablet all datas can be shown during surgery and stored for patient security. During the surgery after calibrating the tibial cut is performed first, where it should be 90° to the longitudinal axis respecting the right slope. Measurement before femoral cuts are performed and give an information about the joint angle according to the anatomical and load axis. The femoral cuts can be performed with the original cutting block of every set in extension and flexion. After positioning the femoral trial, testing is repeated and should show a balanced situation over all the ROM. The overall period datas were stored and compared to the subjective feeling of the patients.
Results
Performing the first 20 patients (DLB) a better balanced situation is visible in all knees respecting the including factors in comparison to the control group (CG). Especially young and active patients demonstrate a huge benefit in coming earlier back to work and sport, elder patients reach independence faster. No extension of the surgical time was seen, respecting the learning curve is a valuable benefit in higher accuracy and precision in TKA. All PROMs show good and excellent results. OKS and AKSS show an average 10% better result after 6 months (AKSS DLB 97/CG 90, OKS DLB 44/ CG 40). The forgotten knee score shows a normal leading according to the short term.
Discussion
DLBR is a new concept using single-use devices and is platform independant. Further measurements and comparisons are necessary to value these first excellent results. By the moment the inclusion factors are settled narrow, but the future will show, where the borders of this method will be.
Conclusion
Measuring the gap and ligament tension all over the ROM from 0 to 90° continuously gives the possibility to value the accuracy of the procedure together with marking points to compare it to the clinical postoperative result. Matching the procedure shows an increasing satisfaction of the patients due to a better balanced situation. Although there are limiting factors (no severe deformities, muscular deseases, ligament failure) it is a hopeful opportunity to increase the results in TKA in the future.